您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 2012电磁场与电磁波02_矢量场论1_正交坐标系
SchoolofElectronicsandInformationEngineering电磁场与电磁波ElectromagneticFieldsandWaves第一章矢量场论1谢泽明华南理工大学电子与信息学院TEL:13662486310Email:qxchu@scut.edu.cn–矢量代数和三种常用的坐标系SchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology内容矢量代数直角坐标系圆柱坐标系球坐标系三种坐标变量的关系三种坐标单位矢量之间的关系SchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology数学是使人类思维走向更高维的桥梁。数学是描述世界的最简洁语言。简洁的语言是深奥理论的源泉。本课程所讨论的矢量是指3维或2维矢量。SchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology矢量代数人类对数的认识过程标量:数字、代数、函数。矢量:2个或3个标量的有序组合。N维矢量:n个标量的有序组合。矩阵:m个n维矢量的有序组合。人的五官感知的世界是三维的,但人的思维是n维。SchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology物理表述:矢量是指既有大小又有方向的量。几何描述:有向线段,即箭头表示方向,长度表示大小。数学表述:单位矢量表示法:坐标表示法:矩阵表示法:矢量表示ˆAAAaˆˆˆxxyyzzAAaAaAa[,,]xyzAAAAˆˆ,1AAAaaAzoyxAxAyAzASchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology矢量运算-线性运算(加减法)加法:矢量加法是矢量的几何和,服从平行四边形规则。CABBACBACˆˆˆxxyyzzAAaAaAaˆˆˆxxyyzzBBaBaBaˆˆˆ()()()xxxyyyzzzCABABaABaABa加法的几何表示:加法的坐标表示:SchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology满足交换律:ABBA满足结合律:()()()()ABCDACBDˆˆˆxxyyzzkAkAakAakAa数乘:SchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology减法:换成加法运算()DABAB逆矢量:和的模相等,方向相反,互为逆矢量。B()BAABCBABDBADBC0推论:任意多个矢量首尾相连组成闭合多边形,其矢量和必为零。SchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology矢量运算-点乘点积或标量积两矢量点积含义一矢量在另一矢量方向上的投影与另一矢量模的乘积,其结果是一标量。如果为单位矢量,则表示矢量在方向的投影。cos(,)(xxyyzTABABABABABABAB矩阵表示)BAˆeˆAeAˆeSchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology运算规律如果与正交,则在直角坐标系中,已知三个坐标轴是相互正交的,即两矢量点积为:(ABBA交换律))(ABCABAC(分配律)0ABABˆˆˆˆˆˆ0,0,0ˆˆˆˆˆˆ1,1,1xyxzyzxxyyzzaaaaaaaaaaaaˆˆˆˆˆˆ()()xxyyzzxxyyzzxxyyzzABAaAaAaBaBaBaABABABSchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology矢量运算-叉乘叉积或矢量积大小为这两个矢量构成的平行四边形的面积,方向与这两个矢量垂直,且、与符合右手螺旋规则。ˆˆˆxyzxyzxyzaaaABAAABBBsin(,)ABABAB=ABABABBACABSchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology如果与平行,则运算规律:不服从分配律和结合律AB0AB(ABBA反交换律))(ABCABAC(分配律))()()ABCBCACAB()()()ABCBACCAB(SchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology矢量运算-例题例2-1证明:()()()()()()ABCDACBDADBC证:应用矢量恒等式)()()ABCBCACAB()()()ABCBACCAB(()()(())(()())()()()()ABCDCDABCADBBDACADBCBDA有得证。SchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology三种常用的坐标系为了描述物理量在空间的位置与分布,必须引入坐标系电磁分析中常用有坐标系有:直角坐标系圆柱坐标系球坐标系根据研究的物体和空间的特点选用不同的坐标系SchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnologyyxzxzyzyxaaaaaaaaazyyxxAAAzaaaA直角坐标系三个坐标变量是x,y,zx=常数、y=常数、z=常数的三个曲面(坐标面)为平面正交,为正交坐标系。两个坐标面的交线(坐标曲线)为直线。坐标曲线两两正交(正交坐标系)坐标单位矢量(坐标曲线的切线方向单位矢量)为,指向对应坐标增加的方向。123:::qxqyqz,,xyzaaaSchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology直角坐标系的坐标单位矢量是常矢量,其方向不随点M的位置变化而变化。线元(长度元)矢量线元:带方向的线段dl,大小为长度,方向为线的方向。dl=axdx+aydy+azdz面元矢量面元:带方向的小面积dS=andS,大小为面积,方向为面的法线方向。体元xyzdldxdldydldzdVdxdydzxyzdSdydzdSdxdzdSdxdy0xyzM(x,y,z)azaxaydxdydz0xyzM(x,y,z)azaxaydxdydzdldS=ndSn0xyzM(x,y,z)azaxaydxdydz0xyzM(x,y,z)azaxaydxdydzdxdydzSchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology圆柱坐标系的三个坐标变量r,,zr=常数、=常数、z=常数的三个曲面正交,为正交坐标系坐标曲线为直线和圆圆柱坐标单位矢量为ar,a,az在柱坐标系中,az是常矢量,ar,a都是变矢量,其方向随点M的位置变化而变化。圆柱坐标系aaaaaaaaarzrzzrzzrrAAAaaaA123:0:02:qrqqzSchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology线元(长度元)面元体元rzdldrdlrddldzdVrdrddzrzdSrddzdSdrdzdSrdrdxyzodMaazardrdzxyzodMaazardrdzSchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology球坐标系三个坐标变量是r,,r=常数、=常数、=常数的三个曲面正交,为正交坐标系球坐标单位矢量为ar,a,a坐标单位矢量与位置有关aaaaaaaaarrrAAArraaaA123:0:0:02qrqqSchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology线元(长度元)面元体元sinRdldrdlrddlrd2sindVrdrdd2sinsinRdSrdddSrdrddSrdrdSchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTechnologySouthChinaUniversityofTechnology三种坐标系之间的关系——坐标变量之间的关系直角坐标系与柱坐标系cossinxryrzz222222arctanarcsinarccosrxyyyxxxyxyzzSchoolofElectronicsandInformationEngineeringSouthChinaUniversityofTec
本文标题:2012电磁场与电磁波02_矢量场论1_正交坐标系
链接地址:https://www.777doc.com/doc-5542016 .html