您好,欢迎访问三七文档
第18章均匀传输线分布参数电路18.1均匀传输线及其方程18.2均匀传输线方程的正弦稳态解18.3均匀传输线的原参数和副参数18.4无损耗传输线18.5无损耗线方程的通解18.6无损耗线的波过程18.7首页本章重点返回1.分布参数电路的概念3.无损耗传输线的波过程重点:2.均匀传输线的方程及其正弦稳态解18.1分布参数电路1.传输线的定义和分类下页上页用以引导电磁波,最大效率的将电磁能或电磁信号从一点定向地传输到另一点的电磁器件称为传输线。①定义②分类a)传递横电磁波(TEM波)的平行双线、同轴电缆、平行板等双导体系统传输线。工作频率为米波段(受限于辐射损耗)。返回b)传递横电波(TE波)或横磁波(TM波)的单导体系统,如金属波导和介质波导等。工作频率为厘米波段。注意本章讨论的是双导体系统传输线。2.传输线的电路分析方法①集总电路的分析方法当传输线的长度l,称为短线,可以忽略电磁波沿线传播所需的时间,即不计滞后效应,可用集中参数的电路来描述。下页上页返回+-u(t)l)(tu+-)(tiLCRG集总参数电路中电场C磁场L热R导线——只流通电流短线下页上页返回当传输线的长度l,称为长线,电磁波的滞后效应不可忽视,沿线传播的电磁波不仅是时间的函数,而且是空间坐标的函数,必须用分布参数电路来描述。+-u(t)l②分布电路的分析方法长线xRΔ0xLΔ0xCΔ0xGΔ0)(x,ti)(x,tu+-下页上页返回例f=50Hzkm6000503108fvf=1000MHzm3.01039810fv注意当传输线的长度l,严格地讲,这是一个电磁场的计算问题。在一定的条件下可作为电路问题来考虑。求解这类问题需要解偏微分方程。下页上页返回18.2均匀传输线及其方程1.均匀传输线均匀传输线沿线的电介质性质、导体截面、导体间的几何距离处处相同。均匀传输线的特点①电容、电感、电阻、电导连续且均匀地分布在整个传输线上;可以用单位长度的电容C0、电感L0、电阻R0、电导G0来描述传输线的电气性质;0000CLGR传输线原参数下页上页返回②整个传输线可以看成是由许许多多微小的线元x级联而成;③每一个线元可以看成是集总参数的电路,因而可以将基尔霍夫定律应用到这个电路的回路和结点。始端+-u(t)x终端iixRΔ0xLΔ0xCΔ0xGΔ0xΔ下页上页返回2.均匀传输线的方程传输线电路模型xRΔ0xLΔ0xCΔ0xGΔ0+-)(x,tu)(x,ti),Δ(txxu+-)Δ(x,txiKVL方程),()Δ(),(Δ),(Δ00txux,txutxxiRttxixL0Δx000iRtiLxu下页上页返回KCL方程0),()Δ()Δ(Δ)Δ(Δ00txix,txix,txxuGtx,txuxC0Δx000uGtuCxi000000uGtuCxiiRtiLxu,均匀传输线方程xRΔ0xLΔ0xCΔ0xGΔ0+-)(x,tu)(x,ti),Δ(txxu+-)Δ(x,txi下页上页返回注意②均匀传输线沿线有感应电势存在,导致两导体间的电压随距离x而变化;沿线有位移电流存在,导致导线中的传导电流随距离x而变化;③均匀传输线方程适用于任意截面的由理想导体组成的二线传输线。①均匀传输线方程也称为电报方程,反映沿线电压电流的变化。下页上页返回18.3均匀传输线方程的正弦稳态解均匀传输线工作在正弦稳态时,沿线的电压、电流是同一频率的正弦时间函数,因此,可以用相量法分析沿线的电压和电流。1.均匀传输线方程的正弦稳态解000iRtiLxu000uGtuCxi方程的相量形式IRLxU00jddUGCxI00jdd下页上页返回IRLxU00jddUGCxI00jdd000jLRZ令:单位长度复阻抗000jCGY单位长度复导纳UYxIIZxU00dddd注意001YZ下页上页返回UYxIIZxU00dddd两边求导IIYZxIUUYZxUdddd2002220022)j)(j(j000000GCRLYZ传播常数通解xxxxeBeBxIeAeAxU2121)()(下页上页返回IZxU0dd2.积分常数之间的关系)(dd1x2x100eeAAZxUZIZZYZYZZC1000000令:00YZZC特性阻抗2202110111AABAABZZZZCC得:注意A1、A2、B1、B2由边界条件确定。下页上页返回3.给定边界条件下传输线方程的解①已知始端(x=0)的电压和电流的解1U1I选取传输线始端为坐标原点,x坐标自传输线的始端指向终端。x)(xI1U)(xU1I+-+-011)0(,)0(IxIUxUxxxxeZAeZAxIeAeAxUC2C121)()(1C21121IZUAAAA下页上页返回可写为)(21)(211C121C11IZUIZUAA解得:x处的电压电流为:eeeexxxxIZUIZUxIIZUIZUxU1C11C11C11C1)(21)(21)()(21)(21)()(21)(21)()(21)(21)(1C11C1eeeeeeeexxxxxxxxIZUxIIZUxU下页上页返回双曲函数:)(21)(21eeeexxxxxshxchxIxZUxIxIZxUxUchsh)(shch)(1C11C1②已知终端(x=l)的电压和电流的解2U2Ilx)(xI2U)(xU2I+-+-)(121C2212eeeellllAAZIAAU下页上页返回lleIZUeIZUAA2C222C21)(21)(21解得:x处的电压电流为:eeeexlxlxlxlIZUIZUxIIZUIZUxU)(2C2)(2C2)(2C2)(2C2)(21)(21)()(21)(21)(的距离。为传输线上一点到终点,令xxlx0)(xI2U)(xU2I+-+-lx以终端为零点下页上页返回xIxZUxIxIZxUxUchsh)(shch)(2C22C2eeeexxxxIZUIZUxIIZUIZUxU2C22C22C22C2)(21)(21)()(21)(21)(例1已知一均匀传输线Z0=0.42779/km,Y0=2.710-690s/km.A455,kV22022IU求f=50Hz,距终端900km处的电压和电流。下页上页返回解xIxZUxIxIZxUxUchsh)(shch)(2C22C2)Ω(5.539800CYZZ1/km5.8410073.1300YZ5.84107.965101.07390033x4.86824.0)(21ee'xxxsh4.7581.0)(21eexxxch下页上页返回V5.47222shch)(02C2xIZxUxU63.2A548chsh)(2C2xIxZUxIA)2.63314sin(2548V)5.47314sin(2222titu下页上页返回4.均匀传输线上的行波xxxxxxxxeIeIeZAeZAxIeUeUeAeAxUC2C121)()(UIZUUUIZUUAA)(21)(211C121C11zCCZIUIUZ下页上页返回瞬时式xteUxteUuutxuaxaxcos2cos2,zCzCcos2cos2,xteZUxteZUiitxiaxax下页上页返回考察u+和i+xeUtxuaxtcos2,特点①传输线上电压和电流既是时间t的函数,又是空间位置x的函数,任一点的电压和电流随时间作正弦变化。zCcos2xteZUiaxt下页上页返回x经过单位距离幅度衰减的量值,称衰减常数。③随距离x的增加,电压和电流的相位不断滞后;经过单位距离相位滞后的量值,称相位常数。②某一瞬间t,电压和电流沿线分布为衰减的正弦函数。下页上页返回④电压和电流沿线呈波动状态,称电压波和电流波;xt=t1t=t2t=t3u+、i+为随时间增加向x增加方向(即从线的始端向终端的方向)运动的衰减波。将这种波称为电压或电流入射波、直波或正向行波。下页上页返回考察最大点的相位:xteUtxuaxcos2,2π11xt2π22xt)()(2121xxtt得同相位移动的速度:)()(2121ttxxv相位速度波传播方向上,相位差为2π的相邻两点间的距离称为波长λ。下页上页返回π2))((xtxtπ2Tfv/⑤沿线传播的功率Z2C2ZcosecosxZUIUPxteUtxuaxcos2,同理考察u-和i-zCcos2,xteZUtxiax下页上页返回xvu-、i-为随时间增加向x减小方向(即从线的终端向始端的方向)运动的衰减波。将这种波称为电压或电流反射波、或反向行波。下页上页返回5.反射系数定义反射系数为沿线任意点处反射波电压相量与入射波电压相量之比。xjxjxeUeUn入射波电压反射波电压xjne2)()()(21)(212C22C22C22C2IZUIZUIZUIZUUUn终端反射系数任一点的反射系数LjenZZZZC2C2nnxxLx2下页上页返回C2C2ZZZZnx0Z2ZC注意①反射系数是一个复数,反映了反射波与入射波在幅值和相位上的差异;②反射系数的大小与传输线特性阻抗和终端负载阻抗有关;1)(j)(),(0222nXZZZ纯电抗,开路短路当:全反射0C2nZZ当:匹配在通信线路和设备连接时,均要求匹配,避免反射下页上页返回例已知一均匀传输线长300km,频率f=50Hz,传播常数=1.0610-384.71/km,ZC=400-5.3,始端电压A1030,kV02200101IU求:(1)行波的相速;(2)始端50km处电压、电流入射波和反射波的瞬时值表达式。解340310055.j110979.07.841006.1s/km1098.2101.055502π53-vV673.154236)(21V381.165806)(
本文标题:电路第十八章
链接地址:https://www.777doc.com/doc-5547449 .html