您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 线性代数知识点总结汇总
线性代数知识点总结1行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。(5)一行(列)乘k加到另一行(列),行列式的值不变。(6)两行成比例,行列式的值为0。(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=kn|A|(2)|AB|=|A|·|B|(3)|AT|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。2矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。2、转置的性质(5条)(1)(A+B)T=AT+BT(2)(kA)T=kAT(3)(AB)T=BTAT(4)|A|T=|A|(5)(AT)T=A(二)矩阵的逆3、逆的定义:AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1注:A可逆的充要条件是|A|≠04、逆的性质:(5条)(1)(kA)-1=1/k·A-1(k≠0)(2)(AB)-1=B-1·A-1(3)|A-1|=|A|-1(4)(AT)-1=(A-1)T(5)(A-1)-1=A5、逆的求法:(1)A为抽象矩阵:由定义或性质求解(2)A为数字矩阵:(A|E)初等行变换(E|A-1)(三)矩阵的初等变换6、初等行(列)变换定义:(1)两行(列)互换;(2)一行(列)乘非零常数c(3)一行(列)乘k加到另一行(列)7、初等矩阵:单位矩阵E经过一次初等变换得到的矩阵。8、初等变换与初等矩阵的性质:(1)初等行(列)变换相当于左(右)乘相应的初等矩阵(2)初等矩阵均为可逆矩阵,且Eij-1=Eij(i,j两行互换);Ei-1(c)=Ei(1/c)(第i行(列)乘c)Eij-1(k)=Eij(-k)(第i行乘k加到j)★(四)矩阵的秩9、秩的定义:非零子式的最高阶数注:(1)r(A)=0意味着所有元素为0,即A=O(2)r(An×n)=n(满秩)|A|≠0A可逆;r(A)<n|A|=0A不可逆;(3)r(A)=r(r=1、2、…、n-1)r阶子式非零且所有r+1子式均为0。10、秩的性质:(7条)(1)A为m×n阶矩阵,则r(A)≤min(m,n)(2)r(A±B)≤r(A)±(B)(3)r(AB)≤min{r(A),r(B)}(4)r(kA)=r(A)(k≠0)(5)r(A)=r(AC)(C是一个可逆矩阵)(6)r(A)=r(AT)=r(ATA)=r(AAT)(7)设A是m×n阶矩阵,B是n×s矩阵,AB=O,则r(A)+r(B)≤n11、秩的求法:(1)A为抽象矩阵:由定义或性质求解;(2)A为数字矩阵:A初等行变换阶梯型(每行第一个非零元素下面的元素均为0),则r(A)=非零行的行数(五)伴随矩阵12、伴随矩阵的性质:(8条)(1)AA*=A*A=|A|E★A*=|A|A-1(2)(kA)*=kn-1A*(3)(AB)*=B*A*(4)|A*|=|A|n-1(5)(AT)*=(A*)T(6)(A-1)*=(A*)-1=A|A|-1(7)(A*)*=|A|n-2·A★(8)r(A*)=n(r(A)=n);r(A*)=1(r(A)=n-1);r(A*)=0(r(A)<n-1)(六)分块矩阵13、分块矩阵的乘法:要求前列后行分法相同。14、分块矩阵求逆:3向量(一)向量的概念及运算1、向量的内积:(α,β)=αTβ=βTα2、长度定义:||α||=3、正交定义:(α,β)=αTβ=βTα=a1b1+a2b2+…+anbn=04、正交矩阵的定义:A为n阶矩阵,AAT=EA-1=ATATA=E|A|=±1(二)线性组合和线性表示5、线性表示的充要条件:非零列向量β可由α1,α2,…,αs线性表示(1)非齐次线性方程组(α1,α2,…,αs)(x1,x2,…,xs)T=β有解。(2)r(α1,α2,…,αs)=r(α1,α2,…,αs,β)(系数矩阵的秩等于增广矩阵的秩,用于大题第一步的检验)6、线性表示的充分条件:(了解即可)若α1,α2,…,αs线性无关,α1,α2,…,αs,β线性相关,则β可由α1,α2,…,αs线性表示。7、线性表示的求法:(大题第二步)设α1,α2,…,αs线性无关,β可由其线性表示。(α1,α2,…,αs|β)初等行变换(行最简形|系数)行最简形:每行第一个非0的数为1,其余元素均为0(三)线性相关和线性无关8、线性相关注意事项:(1)α线性相关α=0(2)α1,α2线性相关α1,α2成比例9、线性相关的充要条件:向量组α1,α2,…,αs线性相关(1)有个向量可由其余向量线性表示;(2)齐次方程(α1,α2,…,αs)(x1,x2,…,xs)T=0有非零解;(3)r(α1,α2,…,αs)<s即秩小于个数特别地,n个n维列向量α1,α2,…,αn线性相关(1)r(α1,α2,…,αn)<n(2)|α1,α2,…,αn|=0(3)(α1,α2,…,αn)不可逆10、线性相关的充分条件:(1)向量组含有零向量或成比例的向量必相关(2)部分相关,则整体相关(3)高维相关,则低维相关(4)以少表多,多必相关推论:n+1个n维向量一定线性相关11、线性无关的充要条件向量组α1,α2,…,αs线性无关(1)任意向量均不能由其余向量线性表示;(2)齐次方程(α1,α2,…,αs)(x1,x2,…,xs)T=0只有零解(3)r(α1,α2,…,αs)=s特别地,n个n维向量α1,α2,…,αn线性无关r(α1,α2,…,αn)=n|α1,α2,…,αn|≠0矩阵可逆12、线性无关的充分条件:(1)整体无关,部分无关(2)低维无关,高维无关(3)正交的非零向量组线性无关(4)不同特征值的特征向量无关13、线性相关、线性无关判定(1)定义法(2)秩:若小于阶数,线性相关;若等于阶数,线性无关【专业知识补充】(1)在矩阵左边乘列满秩矩阵(秩=列数),矩阵的秩不变;在矩阵右边乘行满秩矩阵,矩阵的秩不变。(2)若n维列向量α1,α2,α3线性无关,β1,β2,β3可以由其线性表示,即(β1,β2,β3)=(α1,α2,α3)C,则r(β1,β2,β3)=r(C),从而线性无关。r(β1,β2,β3)=3r(C)=3|C|≠0(四)极大线性无关组与向量组的秩14、极大线性无关组不唯一15、向量组的秩:极大无关组中向量的个数成为向量组的秩对比:矩阵的秩:非零子式的最高阶数注:向量组α1,α2,…,αs的秩与矩阵A=(α1,α2,…,αs)的秩相等16、极大线性无关组的求法(1)α1,α2,…,αs为抽象的:定义法(2)α1,α2,…,αs为数字的:(α1,α2,…,αs)初等行变换阶梯型矩阵则每行第一个非零的数对应的列向量构成极大无关组(五)向量空间17、基(就是极大线性无关组)变换公式:若α1,α2,…,αn与β1,β2,…,βn是n维向量空间V的两组基,则基变换公式为(β1,β2,…,βn)=(α1,α2,…,αn)Cn×n其中,C是从基α1,α2,…,αn到β1,β2,…,βn的过渡矩阵。C=(α1,α2,…,αn)-1(β1,β2,…,βn)18、坐标变换公式:向量γ在基α1,α2,…,αn与基β1,β2,…,βn的坐标分别为x=(x1,x2,…,xn)T,y=(y1,y2,…,yn)T,,即γ=x1α1+x2α2+…+xnαn=y1β1+y2β2+…+ynβn,则坐标变换公式为x=Cy或y=C-1x。其中,C是从基α1,α2,…,αn到β1,β2,…,βn的过渡矩阵。C=(α1,α2,…,αn)-1(β1,β2,…,βn)(六)Schmidt正交化19、Schmidt正交化设α1,α2,α3线性无关(1)正交化令β1=α1(2)单位化4线性方程组(一)方程组的表达形与解向量1、解的形式:(1)一般形式(2)矩阵形式:Ax=b;(3)向量形式:A=(α1,α2,…,αn)2、解的定义:若η=(c1,c2,…,cn)T满足方程组Ax=b,即Aη=b,称η是Ax=b的一个解(向量)(二)解的判定与性质3、齐次方程组:(1)只有零解r(A)=n(n为A的列数或是未知数x的个数)(2)有非零解r(A)<n4、非齐次方程组:(1)无解r(A)<r(A|b)r(A)=r(A)-1(2)唯一解r(A)=r(A|b)=n(3)无穷多解r(A)=r(A|b)<n5、解的性质:(1)若ξ1,ξ2是Ax=0的解,则k1ξ1+k2ξ2是Ax=0的解(2)若ξ是Ax=0的解,η是Ax=b的解,则ξ+η是Ax=b的解(3)若η1,η2是Ax=b的解,则η1-η2是Ax=0的解【推广】(1)设η1,η2,…,ηs是Ax=b的解,则k1η1+k2η2+…+ksηs为Ax=b的解(当Σki=1)Ax=0的解(当Σki=0)(2)设η1,η2,…,ηs是Ax=b的s个线性无关的解,则η2-η1,η3-η1,…,ηs-η1为Ax=0的s-1个线性无关的解。变式:η1-η2,η3-η2,…,ηs-η2η2-η1,η3-η2,…,ηs-ηs-1(三)基础解系6、基础解系定义:(1)ξ1,ξ2,…,ξs是Ax=0的解(2)ξ1,ξ2,…,ξs线性相关(3)Ax=0的所有解均可由其线性表示基础解系即所有解的极大无关组注:基础解系不唯一。任意n-r(A)个线性无关的解均可作为基础解系。7、重要结论:(证明也很重要)设A施m×n阶矩阵,B是n×s阶矩阵,AB=O(1)B的列向量均为方程Ax=0的解(2)r(A)+r(B)≤n(第2章,秩)8、总结:基础解系的求法(1)A为抽象的:由定义或性质凑n-r(A)个线性无关的解(2)A为数字的:A初等行变换阶梯型自由未知量分别取1,0,0;0,1,0;0,0,1;代入解得非自由未知量得到基础解系(四)解的结构(通解)9、齐次线性方程组的通解(所有解)设r(A)=r,ξ1,ξ2,…,ξn-r为Ax=0的基础解系,则Ax=0的通解为k1η1+k2η2+…+kn-rηn-r(其中k1,k2,…,kn-r为任意常数)10、非齐次线性方程组的通解设r(A)=r,ξ1,ξ2,…,ξn-r为Ax=0的基础解系,η为Ax=b的特解,则Ax=b的通解为η+k1η1+k2η2+…+kn-rηn-r(其中k1,k2,…,kn-r为任意常数)(五)公共解与同解11、公共解定义:如果α既是方程组Ax=0的解,又是方程组Bx=0的解,则称α为其公共解12、非零公共解的充要条件:方程组Ax=0与Bx=0有非零公共解有非零解13、重要结论(需要掌握证明)(1)设A是m×n阶矩阵,则齐次方程ATAx=0与Ax=0同解,r(
本文标题:线性代数知识点总结汇总
链接地址:https://www.777doc.com/doc-5567937 .html