您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 生物技术在废水处理中的应用
生物技术在废水处理中的应用摘要:分析目前的水环境污染状况及生物技术在其的应用,最后主要介绍几种在废水处理中应用的生物技术。关键词:废水处理;生物膜法;固定化微生物技术;生物强化处理技术随着工业的高速发展,水环境污染问题越来越严重地威胁着人类的生存环境,制约着社会和经济的进一步发展,因此,水污染控制成为全世界共同关注的问题。目前生物技术应用于环境保护中主要是利用微生物,少部分利用植物作为环境污染控制的生物[1]。生物技术已是环境保护中应用最广的、最为重要的单项技术,其在水污染控制方面发挥着极为重要的作用。应用环境生物技术处理污染物时,最终产物大都是无毒无害的、稳定的物质,如二氧化碳、水和氮气。利用生物方法处理污染物通常能一步到位,避免了污染物的多次转移,因此它是一种消除污染安全而彻底的方法。现在,生物处理法已成为世界各国控制水污染的主要手段,尤其是现代生物技术将成为水污染控制领域重点开发和应用的技术手段,主要应用于废水处理、生物修复以及微生物水处理剂等方面[2]。更因其在处理水污染物方面具有速度快、消耗低、效率高、成本低、反应条件温和以及无二次污染等显著优点,加之技术开发所预示的广阔的市场前景,受到了各国政府、科技工作者和企业家的高度重视。随着生物技术研究的进展和人们对环境问题认识的深入,人们已越来越意识到,现代生物技术的发展,为从根本上解决环境问题提供了无限的希望。废水生物处理是利用微生物的生命活动过程,对废水中的污染物进行转移和转化,从而使废水得到净化的处理方法[3]。这里主要介绍几种废水生物处理技术。厌氧生物处理厌氧生物处理已经广泛应用于许多工业废水的处理,而且诸如能耗少,操作简单,投资及运行费用低廉等优点更显示出在垃圾渗滤液处理方面的巨大优势,且由于产生的剩余污泥量少,所需的营养物质也少的特性,也正适合于营养物质失调的渗滤液的处理[4]。近年来,运用于垃圾渗滤液处理的厌氧生物处理方法主要有:厌氧消化池、厌氧序批式反应器、上流式厌氧污泥床反应器、上流式厌氧过滤反应器、上流式厌氧污泥床过滤反应器及厌氧折流板反应器等[5]。好氧生物处理好氧生物处理工艺是最为经典和技术最为纯熟的污水处理方式。好氧处理不仅可以有效降解有机污染物,还可通过流程的安排进行硝化和反硝化来达到降解氨氮的目的,尽可能降低处理成本,正适合于垃圾渗滤液较高的脱氮要求,且垃圾渗滤液的处理规模一般较小,成分复杂,因此要求处理工艺必须简单、灵活、安全可靠和抗冲击能力强,这些也正好是好氧处理的优势所在[6]。目前,运用垃圾渗滤液处理的好氧处理工艺包括活性污泥法、曝气氧化塘和生物膜法等。生物膜法生物膜法具有抗水量、水质冲击负荷的优点,而且生物膜上能生长世代时间较微生物,如硝化菌等[7]。LoukidouMX[46]等分别一聚氨基甲酸脂颗粒和粉末活为载体的生物流化床处理老龄垃圾渗滤液,发现以聚氨基甲酸脂颗粒为载体,平均去除65%的COD、90%的BOD和70%的色度,在后期稳定阶段NH3-N除率则达到了90%以上;而以粉末活性炭为载体,COD、BOD、NH3-N以及色度去除率为81%、90%、85%和80%。尽管好氧处理能够将可生化降解的有机物完全处理,但有时这种处理能耗较高,不够经济,且由于好氧微生物易手渗滤液中的有毒有害物质影响而降低其去除难降解有机物质的能力。所以,好氧处理一般只适合于小规模的、可生化性较好的垃圾渗滤液的处理,而对于大批量的渗滤液处理,其作为厌氧处理等的后续处理显得更为经济使用。曝气生物滤池曝气生物滤池(BiologicalAeratedFilter)简称BAF,是80年代末在欧美发展起来的一种新型生物膜法污水处理工艺。该工艺具有去除SS、COD、BOD、硝化、脱氮、除磷、去除AOX(有害物质)的作用,其特点是集生物氧化和截留悬浮固体与一体,节省了二沉池,其容积负荷、水力负荷大,水力停留时间短,所需基处建投资少,出水水质好;运行能耗低,运行费用省。曝气生物滤池的特点曝气生物滤池(biologicalaeratedfilter)与普通活性污泥法相比,具有有机负荷高、占地面积小(是普通活性污泥法的1/3)、投资少(节约30%)、不会产生污泥膨胀、氧传输效率高、出水水质好等优点,但它对进水SS要求较严(一般要求SS≤100mg/L,最好SS≤60mg/L),因此对进水需要进行预处理。同时,它的反冲洗水量、水头损失都较大。活性污泥法活性污泥法是由曝气池、沉淀池、污泥回流系统和剩余污泥排除系统组成。污水和回流的活性污泥一起进入曝气池形成混合液。从空气压缩机站送来的压缩空气,通过铺设在曝气池底部的空气扩散装置,以细小气泡的形式进入污水中,目的是增加污水中的溶解氧含量,还使混合液处于剧烈搅动的状态,形悬浮状态。溶解氧、活性污泥与污水互相混合、充分接触,使活性污泥反应得以正常进行[7]。第一阶段,污水中的有机污染物被活性污泥颗粒吸附在菌胶团的表面上,这是由于其巨大的比表面积和多糖类黏性物质。同时一些大分子有机物在细菌胞外酶作用下分解为小分子有机物。第二阶段,微生物在氧气充足的条件下,吸收这些有机物,并氧化分解,形成二氧化碳和水,一部分供给自身的增殖繁衍。活性污泥反应进行的结果,污水中有机污染物得到降解而去除,活性污泥本身得以繁衍增长,污水则得以净化处理。经过活性污泥净化作用后的混合液进入二次沉淀池,混合液中悬浮的活性污泥和其他固体物质在这里沉淀下来与水分离,澄清后的污水作为处理水排出系统。经过沉淀浓缩的污泥从沉淀池底部排出,其中大部分作为接种污泥回流至曝气池,以保证曝气池内的悬浮固体浓度和微生物浓度;增殖的微生物从系统中排出,称为“剩余污泥”。事实上,污染物很大程度上从污水中转移到了这些剩余污泥中。活性污泥法的原理形象说法:微生物“吃掉”了污水中的有机物,这样污水变成了干净的水。它本质上与自然界水体自净过程相似,只是经过人工强化,污水净化的效果更好。固定化微生物技术固定化微生物技术是生物工程领域中的一项新技术。进入80年代后国内外开始应用这种具有独特优点的新技术来处理工业废水和分解难生物降解的有机物质,一些具有特异性的优势菌种不断得到改造或创造,将这些高效专性菌如脱色菌、脱氮、脱磷菌假单胞菌等进行固定化后,菌体密度提高,大大提高了处理效率,尤其是对难降解有毒物质有明显优势[8]。有人利用新研制的聚集—交联固定化细胞技术,将筛选的高效优势脱色菌种固定在活性污泥上,投加于“厌氧—好氧—生物滤池”工艺流程中,处理印染废水,结果表明:出水色度极低,处理后的水可回用。生物强化处理技术为了提高废水处理的效果,而向废水中投加从自然界中筛选的优势菌种,或通过基因组合技术产生的高效菌种,以去除某一种或某一类有害物质。主要强化方法有:(1)高浓度活性污泥法。以高污泥浓度和长泥龄来促进对难分解物质的处理,加快反应速度。日本采用该法处理难分解的聚乙烯醇和粪便污水,取得显著效果。(2)生物-铁法。在普通活性污泥中加入无机盐,多用铁盐(氢氧化铁或氧化铁粉)形成生物铁絮凝体活性污泥,具有高浓度活性污泥法的特点,主要用来提高除磷效果。(3)生物-活性炭法。综合利用微生物氧化能力和活性炭良好的吸附能力,使二者产生协同增效作用。在该系统中,每1g活性炭可去除1~3gCOD,分解废水毒性能力明显增强,同时提高脱氮水平。生物反应器技术生物反应器技术,是现代生物技术发展的一个主要方向。现代化的新型生物膜反应器,其共同特点是反应器内装有比表面大的载体,有利于微生物附着生长形成生物膜,供气或供给的其他反应条件优越,污染物具有充分的时间与微生物接触,有利于增强微生物的分解代谢能力[9]。目前,2000m3的反应器已经问世。虽然其处理能力较低,造价较高,但其管理方便,运行费用低,所以欧美地区约有7%的污水处理厂采用该技术。生物修复技术生物修复技术是利用生物,特别是微生物将土壤、地下水或海洋中污染物现场降解为CO2和H2O或转化为无害物质的工程技术系统。这项技术正被用于清除地下水、废水中的污染物。金属虽然不能被生物降解,但微生物可将其转移或降低其毒性[9]。为了加快去除污染物的进程,常常采用许多强化措施,使自然生态系统维持原状的前提下,使受污染的环境得以修复。研究表明,生物修复与传统的物化法相比具有以下优点:①经济,仅为物化法30%-50%;②对环境影响小,不产生二次污染,遗留问题少;③最大限度地降低污染物的浓度;④修复时间较短,就地修复,操作方便。微生物水处理剂微生物水处理剂主要集中在以下几个方面:①微生态制剂。微生态制剂是一种由优势互补的微生物菌群、繁殖促进剂和活化剂配制而成的活性微生物制剂,已经在保健领域发挥重要作用。用于环境净化的微生态制剂由于其应用范围广、使用安全、无副作用,为区域环境保护提供了新的重要手段。欧美近年来加快了这方面的研究开发,已有采用微生态制剂原位修复水体的成功实例。②生物吸附剂。生物吸附剂是废水生物处理的一个新的发展方向,主要有两大类:一类是高比表面积和高吸附率的生物体吸附水中的污染物;另一类是集生物吸附和生物降解能力为一体净化废水中的污染物的生物吸附剂。目前生物吸附剂的固定化技术使生物与离子交换树脂一样能解吸回收金属和重复利用。③微生物絮凝剂。微生物絮凝剂是利用生物技术,通过微生物发酵,抽提精制而得到的一种具有生物分解性和安全性的新型、高效、无毒的廉价的水处理剂,这些是无机或有机合成高分子絮凝剂所不具备的。其特点是降解性能好,成本低,无二次污染等。目前,已筛选出19种具有絮凝能力的微生物,其中,霉菌8种,细菌5种,放线菌5种,酵母菌1种。随着生物技术的发展,微生物水处理剂的开发与应用具有良好的前景。生物藕合技术近年来,高级氧化技术、生物处理技术处理有毒难降解工业废水得到了不同程度的发展,但采用现有单一的高级氧化或生物处理技术很难将有毒难降解工业废水处理达标。因此,采用高级氧化-生物藕合技术处理有毒难降解工业废水已经成为工业废水处理技术发展的新趋势[5]。就目前的研究进展来看,一般都是将高级氧化处理作为有毒难降解工业废水的预处理技术使用,将废水中有机污染物的浓度及毒性降至较低范围,同时增加工业有机废水的可生化性,而后再根据高级氧化法处理结果,辅之以适当的生物处理方法将工业废水处理至接近或达到排放标准。高级氧化一生物藕合技术有很多,如光催化氧化生物处理新技术、电化学高级氧化一高效生物处理技术、超声波预处理一高效生物处理技术、辐射分解一生物处理组合工艺等。目前,我国已经开始在印染、制药等工业领域尝试利用这一技术手段进行工业废水的处理研究。由于高级氧化-生物藕合技术手段研究和应用时间很短,到目前为止,有关这方面的研究仅局限于高级氧化技术及生物处理技术各自的最佳工艺条件研究,实质上只是简单机械地将两种处理技术串联起来使用,而对于高级氧化一生物反应藕合化工过程的研究一直作为“黑箱”处理,主要靠经验或半理论半经验来宏观设计、优化与集成。对高级氧化处理产生的组分及结构对后续生物处理过程与效果的祸合与优化匹配技术,以及对多种污染物在高级氧化一生物处理过程中的交互作用、转化途径及其模型框架与处理效率间的定量关系的研究,在国内外尚未见文献报道。优化组合的处理工艺提高难降解物质的去除率,必须延长水力停留时间和增加泥龄,提高微生物有效浓度,增加污染物与微生物的接触时间[10]。目前常用的工艺有:a.采用PACT工艺(添加粉末活性炭活性污泥工艺),使有机物除被微生物氧化处理外,还被活性炭所吸附。由于活性炭表面的污泥泥龄较长,污染物与微生物接触时间远大于水力停留时间,从而使难降解毒性有机物去除率提高。b.厌氧-好氧工艺的组合有时采用单独的好氧或厌氧工艺处理效果都不理想,但采用联合处理工艺后,可能会发挥各工艺的优点,产生协同效应,使处理效果大大提高。如厌氧-缺氧/好氧工艺组合。改进的生物法因具有处理效率高、极少产生二次污染、出水水质好、运行与操作管理方便且费用较低等优点。但是改进的生物处理法仍然存在一些缺点如:微生物培养条件困难,工程菌难以驯化,处理时间长等。如果既能保留生物处理法的优势,又能找到新方
本文标题:生物技术在废水处理中的应用
链接地址:https://www.777doc.com/doc-5573821 .html