您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 出租车计价器设计(毕业论文)
哈尔滨工程大学毕业设计说明书(论文)第页0哈尔滨工程大学毕业论文题目:出租车计价器设计专业:姓名:哈尔滨工程大学毕业设计说明书(论文)第页1目录1.摘要………………………………………………12.第一章绪论……………………………………..23.第二章总体方案的设计……………………….34.第三章系统硬件电路设计……………………45.第四章软件设计………………………………12哈尔滨工程大学毕业设计说明书(论文)第页26.第五章仿真与调试…………………………….147.第六章实物制作……………………………..168.参考文献………………………………………..189.结论……………………………………………….1910.附录1整机电路图…………………………….2011.附录2源程序………………………………..21摘要时代变迁,电子技术也在智能化、自动化、人性化,传统出租车计价器已经满足不了人们的要求。出租车计价器计费是否准确、出租车司机是否超速才是乘客关心的问题,而计价器营运数据的管理是否方便才是乘客最关心的问题,计价器营运数据的管理是否方便才是出租车死机最关注的。因此怎样设计出一种面面俱到的计价器十分重要。本设哈尔滨工程大学毕业设计说明书(论文)第页3计利用AT89C52单片机,具有性能可靠、电路简单、成本低等特点。所设计的出租车计价器的主要功能有:数据的复位、数据输出、路程输出、计时计价、单价输出及调整、显示当前的系统时间等功能,同时在不计价的时候还能作为时钟为司机同志提供方便。关键词出租车;计价器;单片机第一章绪论入21世纪,出租车已经广泛地出现在我们周围。随着人们生活水平的不断提高,出租车的使用频率也越来越高,出租车行业也以高质量的服务给人们带来了出行的享受。随着出租车行业的发展,对出租车计费器的要求也越来越高。二十世纪后半期,随着集成电路和计算机技术的飞速发展,数字系统也得到了飞速发展,其实现方法经历了由分立元件、SSI、MSI到LSI、VLSI以及UVLSI的过程。同时为了提高系统的可靠性与通用性,微处理器和专业集成电路(ASIC)逐渐取代了通用全硬件LSI电路,而ASIC以其体积小、重量轻、功耗低、速度快、成本低、保密性好而脱颖而出。目前,业界大量可编程逻辑器件(PLD),尤其是现场可编程逻辑器件(FPLD)被大量地应用在ASIC哈尔滨工程大学毕业设计说明书(论文)第页4的制作当中。在可编程集成电路的开发过程中,以计算机为工作平台,融合了应用电子技术、计算机技术、智能化技术最新成果的电子设计自动化(EDA)技术主要能辅助进行三方面的设计工作:IC设计,电子电路设计以及PCB设计。但是由于行业的特殊性,出租车行业总存在着买纠纷,困扰着行业的发展。而在出租车行业中解决这一矛盾的最好方法就是改良计价器,用更加精良的计价器来为乘客提供更加方便快捷的服务。出租车计价器是出租车营运收费的专用智能仪表,目前市面所使用的计价器大都功能较少,这给出租入21世纪,出租车已经广泛地出现在我们周围。随着人们生活水平的不断提高,出租车的使用频率也越来越高,出租车行业也以高质量的服务给人们带来了出行的享受。但是由于行业的特殊性,出租车行业总存在着买纠纷,困扰着行业的发展。而在出租车行业中解决这一矛盾的最好方法就是改良计价器,用更加精良的计价器来为乘客提供更加方便快捷的服务。服务质量及管理带来一定影响。随着电子技术的发展,出租车计价器技术也在不断进步和提高。国内出租车计价器已经经历了4个阶段的发展。从传统的全部由机械元器件组成的机械式,到半电子式,即用电子线路代替部分机械元器件的出租车计价器。而功能齐全的计价器大都采用双CPU结构,这就提高了计价器的生产成本。从加强出租车行业管理及服务质量并且节约成本出发,本设计介绍了一种以AT89C52单片机为核心的,具有计时、计价、性能可靠、电路简单、成本低等特点的多功能出租车计价器,能够很好的满足市场对出租车计价器的要求。本设计的目的就是通过对现有计价器的分析,从而解决计价器的现存问题,同时完成具有单价输出、单价调整、路程输出、显示当前的系统时间等功能的新型计价器的硬件及软件设计。第二章总体方案的设计2.1出租车计费设计:①单程单价:2元/公里②往返单价:1.5元/公里2.2基本设计思想:本设计采用AT89C52为心芯片的电路来实现,利用单片机丰富的IO端口,及其控制的灵活性,实现基本的里程计价和价格调整、时钟显示的功能。其原理如图2-1所示:单片机键盘控制单元时间计算单元显示单元哈尔滨工程大学毕业设计说明书(论文)第页5图2-1总体设计方框图首先,选择单程或双程按键,开始计时计费。在到达目的地后,数码管显示金额为里程费用。而后,按下清零开关,又可进行新一轮的计时计费。图2-2工作流程图第三章系统硬件电路设计3.1单片机的简介单片机的工作是就是执行用户程序、指挥各部分硬件完成既定任务。单片机能够工作的最小电路还包括时钟和复位电路,通常称为单片机最小系统电路。以下是采用单片机AT89CC51的最小系统介绍。单片机AT89C51是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4kbytes的可反复擦写的只读程序存储器(PEROM)和128bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,可灵活应用于各种汽车启动:里程、金额不计数里程计数金额计数显示里程(左)显示金额(右)汽车到达终点车费、里程清零YESNOYESNO哈尔滨工程大学毕业设计说明书(论文)第页6控制领域。如图3-1为AT89C52的芯片图:图3-1AT89C52单片机引脚图P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。P1口:P1是一个带内部上拉电阻的8位双向I/O口。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。P2口:P2是一个带有内部上拉电阻的8位双向I/O口。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16位地址的外部数据存储器时,P2口送出高8位地址数据。在访问8位地址的外部数据存储器时,P2口线上的内容(也即特殊功能寄存器(SFR)区中R2寄存器的内容),在整个访问期间不改变。P3口:P3口是一组带有内部上拉电阻的8位双向I/O口。P3口输出缓冲级可驱动4个TTL逻辑门电路。对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。作输入端时,被外部拉低的P3口将用上拉电阻输出电流(IIL)。P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如下表3-2所示:哈尔滨工程大学毕业设计说明书(论文)第页7表3-2P3口的第二功能说明端口引脚第二功能P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.20INT(外中断0)P3.31INT(外中断1)P3.4T0(定时/计数器0外部输入)P3.5T1(定时/计数器1外部输入)P3.6WR(外部数据存储器写选通)P3.7RD(外部数据存储器读选通)RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。ALE/PROG:当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。即使不访问外部存储器,ALE仍以时钟振荡频率的l/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。PSEN:程序储存允许输出是外部程序存储器的读选通信号,当AT89C51由外部程序存储器取指令时,每个机器周期两次PSEN有效,即输出两个脉冲。在此期间,当访问外部数据存储器,这两次有效的PSEN信号不出现。EA/VPP:外部访问允许。欲使CPU仅访问外部程序存储器(地址为0000H—FFFFH),EA端必须保持低电平(接地)。需注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端为高电平(接VCC端),CPU则执行内部程序存储器中的指令。XTAL1:振荡器反相放大器的及内部时钟发生器的输入端。XTAL2:振荡器反相放大器的输出端。3.2时钟电路单片机是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号控制下严格地按照时序进行工作。时钟电路用于产生单片机工作所需要的时钟信号。AT89C5l中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。只要在XTAL1和XTAL2之间跨接晶振和微调电容,就可以构成一个稳定的自激振荡器,如图3-3。哈尔滨工程大学毕业设计说明书(论文)第页8图3-3时钟电路一般地,电容C1和C2取30pF;晶振的频率范围是1.2~12MHz。晶振频率越高,系统的时钟频率也越高,单片机的运行速度也就越快。在通常情况下,使用振荡频率为6MHz或12MHz的晶振。如果系统中使用了单片机的串行口通信,则一般采用振荡频率为11.0592MHz的晶振。3.3复位电路单片机不管是刚开始接上电源,还是断电,后或者发生故障都要复位。单片机复位是使CPU和系统中的其他功能部件都恢复到一个确定的初始状态,并从这个状态开始工作。所以需要一个复位电路。复位电路有上电复位电路和按键复位电路。上电复位电路是利用电容充电来实现复位的,在接电瞬间,RST端的电位与VCC相同,随着充电电流的减少,RST的电位逐渐下降。只要保证RST为高电平的时间大于两个机器周期,便能正常复位。按键复位电路除了具有上电复位电路的功能外,还可以接一个按键来实现复位,此时电源VCC经两个电阻分压,在RST端产生一个复位高电平。本次设计所选用得复位电路为上电复位电路。在振荡器运行时,有两个机器周期(24个振荡周期)以上的高电平出现在此引腿时,将使单片机复位,只要这个脚保持高电平,52芯片便循环复位。复位后P0-P3口均置1引脚表现为高电平,程序计数器和特殊功能寄存器SFR全部清零。当复位脚由高电平变为低电平时,芯片为ROM的00H处开始运行程序。复位是由按键复位电路来实现的。片内复位电路是复位引脚RST通过一个斯密特触发器与复位电路相连,斯密特触发器用来抑制噪声,它的输出在每个机器周期的S5P2,由复位电路采样一次。复位电路通常采用上电复位和按键复位两种方式,此电路系统采用的是按键复位电路。当时钟频率选用12MHz时,C取22μF,Rs约为200Ω,Rk约为1K。常用的复位电路如下3-4图所示:哈尔滨工程大学毕业设计说明书(论文)第页9图3-4上电复位电路单片机复位的条件是:必须使RST(第9引脚)加上持续两个机械周期(即24个脉冲振荡周期)以上的高电平。若时钟频率为12MHZ,每个机器周期为1μs,则需要加上持续2μs以上时间高电平。3.4LED数码管显示电路显示器普遍地用于直观地显示数字系统的运行状态和工作数据,按照材料及产品工艺,单片机应用系统中常用的显示器有:发光二极管LED显示器、液晶LCD显示器、CRT显示器等。LED显示器是现在最常用的显示器之一。3.4.1数码管的结构及原理1.LED数码管的结构在本设计中采用的是位LED显示数码管,它功耗小,亮度高、字形清晰,工作电压低(1.5~3V)、体积小、可靠性高、寿命长,响应速度极快。它一共10个引脚,上面、下面分别五个引脚。其管脚顺序如图3-5所示:上面{DIG1,b,c,e,d}下面{g,dp,f,DIG2}。图3-5两位数码管
本文标题:出租车计价器设计(毕业论文)
链接地址:https://www.777doc.com/doc-5594190 .html