您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 考点09对数与对数函数教师版备战2020年高考理科数学必刷题集
1考点09对数与对数函数1.设函数tan2xfx,若3log2af,151log2bf,0.22cf,则()A.abcB.bcaC.cabD.bac【答案】D【解析】1551loglog22bff,因为35log2log20且0.2033221log3log2,故0.2530log2log221,又tan2xfx在0,上为增函数,所以0.253log2log22fff即bac,故选D.2.设23451111logloglogloga,yxa,xN,当y取最小值时的x的值为()A.2B.3C.4D.5【答案】C【解析】23451111loglogloglogalog2log3log4log5log120,∵481,5243.45aa∴yxa,xN,当y取最小值时的x的值为4.故选:C.3.若点1414log7,log56在函数()3fxkx的图象上,则()fx的零点为()A.1B.34C.2D.32【答案】D【解析】解:根据题意,点1414log7log56(,)在函数()3fxkx=的图象上,2则1414log56log73k=,变形可得:2k=-,则()=2+3fxx若()0fx=,则32x,即()fx的零点为32,故选:D.4.对于问题“已知关于x的不等式20axbxc的解集为2,5,解关于x的不等式20cxbxa”,给出如下一种解法:由20axbxc的解集为2,5,得2110abcxx的解集为11,52,即关于x的不等式20cxbxa的解集为11,52.类比上述解法,若关于x的不等式0xaxb的解集为1,3,则关于x的不等式1log301log3xxab的解集为()A.3,27B.3,9C.1,27D.1,9【答案】A【解析】将关于x的不等式1log301log3xxab变形可得1log301log3xxab,从而由条件可得113log3x.利用对数换底公式有31log3x,即333log3loglog27x,于是所求不等式的解集为3,27,故选A.5.已知2log6a,5log15b,7log21c则,,abc的大小关系为()A.abcB.cbaC.cabD.bca【答案】B【解析】解:由于22log6log42a,772log211log3,cac552log151log3b,33log7log5,可得bc,综合可得abc,3故选B.6.已知正实数a,b,c满足236logalogblogc,则()A.abcB.2bacC.cabD.2cab【答案】C【解析】∵正实数a,b,c满足236logloglogabc,∴设236logloglogabck,则2ka,3kb,6kc,∴cab.故选:C.7.已知120.5343log(244)abcbxx,,则实数a,b,c的大小关系是()A.cbaB.bacC.abcD.acb【答案】C【解析】由题得1133433aabb,可得11ab,则ab;因为222442[(1)1]2xxx,则22log2[(1)1]1cbx,可得10cb,因此cb,所以有abc,故选C。8.已知集合{|(1)(3)}Axyxx,2{|log1}Bxx,则ABA.1{|}3xxB.01xxC.{|32}xxD.{|2}xx【答案】B【解析】由二次根式有意义的条件可得(1)(3)0xx,解得31x,所以{|(1)(3)}Axyxx{|31}xx.4由对数函数的性质可得22loglog2x,解得02x,所以2{|1}Bxlogx{|02}xx,所以AB{|01}xx.故选B.9.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lgEmmE,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为A.1010.1B.10.1C.lg10.1D.10–10.1【答案】A【解析】两颗星的星等与亮度满足12125lg2EmmE,令211.45,26.7mm,10.111212222lg(1.4526.7)10.1,1055EEmmEE.故选:A.10.已知5log2a,0.5log0.2b,0.20.5c,则,,abc的大小关系为()A.acbB.abcC.bcaD.cab【答案】A【解析】551log2log52a,0.50.5log0.2log0.252b,10.200.50.50.5,故112c,所以acb.故选A.511.若ab,则A.ln(a−b)0B.3a3bC.a3−b30D.│a││b│【答案】C【解析】取2,1ab,满足ab,ln()0ab,知A错,排除A;因为9333ab,知B错,排除B;取1,2ab,满足ab,12ab,知D错,排除D,因为幂函数3yx是增函数,ab,所以33ab,故选C.12.已知0.20.32log0.2,2,0.2abc,则A.abcB.acbC.cabD.bca【答案】B【解析】22log0.2log10,a0.20221,b0.3000.20.21,则01,cacb.故选B.13.设0.321log0.6,log0.62mn,则()A.mnmnmnB.mnmnmnC.mnmnmnD.mnmnmn【答案】A【解析】0.30.3log0.6log10,m2211log0.6log10,22n0mn0.60.611log0.3log4mn0.60.6log1.2log0.61,即1mnmn,故mnmn.又20mnmnn,所以mnmn.故mnmnmn,所以选A.14.设3log6a,5log10b,61log2c,则()A.abcB.bacC.cabD.cba【答案】D【解析】6333log6log321log2a;555log10log521log2b又356log2log2log2cba本题正确选项:D15.设集合A={x|x2﹣x﹣2>0},B={x|0<2logx<2},则A∩B=()A.(2,4)B.(1,1)C.(﹣1,4)D.(1,4)【答案】A【解析】A={x|x<﹣1或x>2},B={x|1<x<4};∴A∩B=(2,4).故选:A.16.若4log3a,0.40.6b,2log21c,则实数a,b,c的大小关系为()A.cbaB.acbC.acbD.bac【答案】A【解析】由题得33log4log31,a0.400.60.61,0bb,2log21c12log10,所以abc.故选:A17.以下四个数中,最大的是()A.3ln3B.1eC.lnππD.15ln1530【答案】B【解析】由题意,令lnxfxx,则21xfxx,所以ex时,0fx,∴fx在(,)e上递减,又由315e,∴3(15)fefff,7则1111115331530lnln3lnlnln15ln15ee,即31ln15ln3ln1530e,故选:B.18.已知函数2logfxx,若函数gx是fx的反函数,则2fg()A.1B.2C.3D.4【答案】B【解析】由函数2yfxlogx(),得2yx,把x与y互换,可得2xy,即2xgx(),∴2224g(),则22442fgflog()().故选:B19.设全集,,,则()A.B.C.D.【答案】C【解析】,,则或,则,故选:.20.已知集合{|ln}2Axyx(),2|30Bxxx,则AB()A.(2,3)B.(0,3)C.(-3,0)D.(0,2)【答案】A【解析】8由对数的运算,可得{|ln22,}Axyx()()∞,2(0,3)|30Bxxx,根据集合的交集运算,可得2,3AB(),故选A.21.已知集合,,则()A.B.C.D.【答案】D【解析】解:∵;∴;∴.故选:D.22.若定义在R上的函数fx满足2fxfx且1,1x时,fxx,则方程3logfxx的根的个数是A.4B.5C.6D.7【答案】A【解析】因为函数fx满足2fxfx,所以函数fx是周期为2的周期函数.又[1,1]x时,||fxx,所以函数fx的图象如图所示.再作出3logyx的图象,易得两图象有4个交点,所以方程3()logfxx有4个零点.故应选A.23.已知函数221()log(1)1xaxfxxx,,,若[(0)]2ff,则实数a的值是_______.【答案】2【解析】9∵0(0)223f∴[(0)](3)log2afff∵[(0)]2ff∴log22a,因为0,a所以解得a=2.故答案为:224.已知33log,ln3,log2aebc,则a,b,c中最小的是______.【答案】c【解析】b=ln3>1,又2<e<3,所以log32<log3e<1,即c<a<b,故a,b,c中最小的是c.故答案为:c
本文标题:考点09对数与对数函数教师版备战2020年高考理科数学必刷题集
链接地址:https://www.777doc.com/doc-5600971 .html