您好,欢迎访问三七文档
1考点27数系的扩充与复数的引入1.i为虚数单位,则复数432ii()A.11255iB.11255iC.11255iD.11255i【答案】B【解析】∵43i2i43i112i112 i2i2i2i555∴复数43i112i2i55故选:B.2.在复平面内,已知复数z对应的点与复数1i对应的点关于实轴对称,则zi()A.1iB.1iC.1iD.1i【答案】C【解析】由题得z=1-i,所以1111ziiiii.故选:C.3.已知复数z满足(12)43izi,则z的虚部是()A.-1B.iC.1D.i【答案】C【解析】由1243izi得431052125iizii,所以2zi,所以其虚部为1,故选C.4.复数1,ziz为z的共轭复数,则2zzi()A.2iB.22iC.4iD.4i【答案】D【解析】2由题意,1iz,则2i1i1i2izz1i13i1i1+3i=4i,故选D.5.已知11aibii(),abR,其中i为虚数单位,则ab()A.0B.1C.-1D.2【答案】B【解析】依题意有1i(1i)(i)1(1)iabbb,故0,1,1baab.6.已知,abR,2aiibi,则abi的共轭复数为A.2iB.2iC.2iD.2i【答案】A【解析】由12aiiaibi,得1 2ba,∴2abii,其共轭复数为2i,故选A.7.已知复数1221izizi,则z()A.22B.52C.2D.5【答案】A【解析】由题()()()()()()123121217z11233310iiiiiiiiii+++++====+---+故z22121+7=102故选:A.8.若5312imnii,其中,mnR,则mn()A.145B.125C.125D.145【答案】B【解析】3依题意,得53(53)(12)12(12)(12)iiiiii51036113555iii,所以15m,135n,所以125mn.故选:B.9.设i是虚数单位,若复数12zi,则复数z的模为()A.1B.22C.3D.5【答案】D【解析】依题意,22125z,故选D.10.已知20191zi,则2zi()A.10B.22C.2D.2【答案】A【解析】由201911zii,所以222131310zii.故选A.11.复数z满足113zii,则复数z等于()A.1iB.1iC.2D.-2【答案】B【解析】复数z满足1132zii,∴2121111iziiii,故选B.12.设351izii,则z()A.2B.12C.22D.102【答案】C4【解析】351111222iiiziiii112442z本题正确选项:C.13.已知复数z满足2zzii(i为虚数单位),则z()A.5B.2C.102D.1【答案】C【解析】由2zzii得:21izi2510122izi本题正确选项:C.14.已知复数z满足2(1)26zii(i为虚数单位),则z为()A.10B.13C.10D.13【答案】A【解析】复数z满足2126zii,则2222626263(1)22iiiiziiii,所以||1910z.故选A.15.已知复数(i)(1i)za(i为虚数单位)在复平面内对应的点在直线2yx上,则实数a的值为()A.0B.1C.1D.13【答案】D【解析】因为(i)(1i)1(1)zaaai,对应的点为(1,1)aa,因为点在直线2yx上,所以512(1)aa,解得13a.故选D.16.已知i为虚数单位,则复数3(1)izii的虚部为()A.1B.2C.1D.2【答案】C【解析】因为3(3)(1)122(1)2iiiiiiiii,所以z的虚部为1.17.已知复数34zi,则zz()A.3455iB.3455iC.1iD.1i【答案】A【解析】因为34zi,所以34zi,因此5z,所以55(34)343434(34)(34)555ziiiziii.故选A.18.已知i是实数集,复数z满足3zzii,则复数z的共轭..复数为()A.12i+B.12i-C.2iD.2i【答案】C【解析】3zzii可化为31izi3(3)(1)42=21(1)(1)2iiiiziiii++--===-++-z的共轭复数为2zi.故选C.19.已知i为虚数单位,复数z满足121iiz,则z()A.1B.3C.5D.56【答案】A【解析】由题可得1(2)(1)iiz,则z=()()()()12111222iiiiii----=-=++-4355i,2243||155z故选A.20.已知复数1izi,则22z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】∵11111122iiiziiii,∴2211222zi,∴22z在复平面内对应的点的坐标为211,22,位于第一象限.故选:A.21.已知复数312izi,则复数z的实部为()A.25B.25iC.15D.15i【答案】A【解析】∵3(12)2112(12)(12)55iiiziiii,∴复数z的实部为25.故选A.22.已知复数z满足32izi(i是虚数单位),则z=()A.23iB.23iC. 23iD. 23i【答案】A【解析】解:由32izi,得2323223iiiziii,723zi.故选:A.23.已知31izi(其中i为虚数单位),则z的虚部为()A.iB.1C.1D.2【答案】B【解析】因为3(3)(1)4221(1)(1)2iiiiziiii,所以2zi,故z的虚部为1,故选B.24.i是虚数单位,若21aii是纯虚数,则实数a的值为_________.【答案】2【解析】2i1i22i2i1i1i1i2aaaa,2i1ia是纯虚数,202a且202a,2a∴.故答案为2.25.已知i是虚数单位,复数z满足3ii4iz,则复数z的实部为_____.【答案】-4【解析】24343ziii,实部为4.26.20191i1i=_________.【答案】i.【解析】解法一:2019321i1i1i(1i)2ii1i1i1i(1i)(1i)2.8解法二:3221i(1i)(1ii)1iii1i1i.
本文标题:考点27数系的扩充与复数的引入2020年领军高考数学理一轮必刷题教师版备战2020年高考理科数学必刷
链接地址:https://www.777doc.com/doc-5601042 .html