您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 考点58随机事件的概率与古典概型教师版备战2020年高考理科数学必刷题集
1考点58随机事件的概率与古典概型1.设事件A,B,已知P(A)=15,P(B)=13,P(A∪B)=815,则A,B之间的关系一定为()A.两个任意事件B.互斥事件C.非互斥事件D.对立事件【答案】B【解析】因为P(A)+P(B)=15+13=815=P(A∪B),所以A,B之间的关系一定为互斥事件.2.小明从某书店购买5本不同的教辅资料,其中语文2本,数学2本,物理1本.若将这5本书随机并排摆放在书架的同一层上,则同一科目的书都不相邻的概率是()A.15B.25C.35D.45【答案】B【解析】语文、数学只有一科的两本书相邻,有2A22A22A23=48种摆放方法;语文、数学两科的两本书都相邻,有A22A22A33=24种摆放方法;而五本不同的书排成一排总共有A55=120种摆放方法.故所求概率为1-48+24120=25.故选B.3.做抛掷两颗骰子的试验,用(x,y)表示结果,其中x表示第一颗骰子正面朝上的点数,y表示第二颗骰子正面朝上的点数,则x+y>10的概率是()A.25B.512C.16D.112【答案】D【解析】(x,y)的所有基本事件共有6×6=36(个),事件“x+y>10”包含(5,6),(6,5),(6,6),共3个基本事件.根据古典概型的概率计算公式可知,x+y>10的概率是112.故选D.4.某校食堂使用除面值外,大小、手感完全一样的餐票,某同学口袋中有2张一元餐票,3张两元餐票,1张五元餐票,他从口袋中随机摸出2张餐票,则这2张餐票的面值之和不少于4元的概率为()A.715B.815C.35D.23【答案】B【解析】该同学从口袋中随机摸出2张餐票,总的基本事件数是C26=15,若这2张餐票的面值之和不少于4元,则这2张餐票为2张两元的或1张两元的、1张五元的或1张一元的、1张五元的,包含的基本事件2数为C23+C13C11+C12C11=8,根据古典概型的概率计算公式可知,这2张餐票的面值之和不少于4元的概率为815.5.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A.34B.58C.12D.14【答案】C【解析】由题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P=12.6.一袋中装有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从袋中一次性随机摸出2只球,则这2只球颜色不同的概率为()A.35B.45C.23D.56【答案】D【解析】从袋中一次性随机摸出2只球的所有可能情况有C24=6(种),设“这2只球颜色不同”为事件N,这2只球颜色可能为1白1红,1白1黄,1红1黄,事件N包含的情况C11C11+C11C12+C11C12=5(种),故这2只球颜色不同的概率P(N)=56.7.袋子中装有大小相同的5个小球,分别有2个红球、3个白球.现从中随机抽取2个小球,则这2个小球中既有红球也有白球的概率为()A.34B.710C.45D.35【答案】D【解析】设2个红球分别为a,b,3个白球分别为A,B,C,从中随机抽取2个,则有(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C),共10个基本事件,其中既有红球也有白球的基本事件有6个,则所求概率为P=610=35.8.从集合A={-3,-2,-1,2}中随机选取一个数记为k,从集合B={-2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第四象限的概率为()A.112B.163C.14D.12【答案】B【解析】根据题意可知,总的基本事件(k,b)共有4×3=12个,直线y=kx+b不经过第四象限,则k>0,b>0,包含的基本事件有(2,1),(2,2),共2个,根据古典概型的概率计算公式可知直线y=kx+b不经过第四象限的概率P=212=16.故选B.9.已知向量a=(x,y),b=(1,-2),从6张大小相同,分别标有号码1,2,3,4,5,6的卡片中,有放回地抽取两张,x,y分别表示第一次、第二次抽取的卡片上的号码,则满足a·b>0的概率是()A.112B.34C.15D.16【答案】D【解析】设(x,y)表示一个基本事件,则两次抽取卡片的所有基本事件有6×6=36个.a·b>0,即x-2y>0,满足x-2y>0的基本事件有(3,1),(4,1),(5,1),(6,1),(5,2),(6,2),共6个,所以所求概率P=636=16.故选D.10.有10件产品,其中有2件次品,每次抽取1件检验,抽检后不放回,共抽2次.事件“抽到1件正品,1件次品”发生的概率是()A.3281B.512C.12D.1645【答案】D【解析】由题意知,这10件产品中有2件次品,8件正品,每次抽取1件,抽检后不放回,共抽2次,共有A210=90种情况,其中事件“抽到1件正品,1件次品”包含的情况有A22C18C12=32种情况,根据古典概型的概率计算公式知,事件“抽到1件正品,1件次品”发生的概率P=3290=1645.11.如图,在A,B两点间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条且使每条网线通过最大信息量,则选取的三条网线由A到B可通过的信息总量为6的概率是()A.14B.134C.12D.23【答案】A【解析】设这6条网线从上到下分别是a,b,c,d,e,f,任取3条有:(a,b,c),(a,b,d),(a,b,e),(a,b,f),(a,c,d),(a,c,e),(a,c,f),(a,d,e),(a,d,f),(a,e,f),(b,c,d),(b,c,e),(b,c,f),(b,d,e),(b,d,f),(b,e,f),(c,d,e),(c,d,f),(c,e,f),(d,e,f),共20个不同的取法,选取的三条网线由A到B可通过的信息总量为6的取法有:(a,b,f),(a,c,e),(a,d,e),(b,c,e),(b,d,e),共5个不同的取法,所以选取的三条网线由A到B可通过的信息总量为6的概率是14.12.已知函数f(x)=13x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()A.79B.13C.59D.23【答案】D【解析】对函数f(x)求导可得f′(x)=x2+2ax+b2,要满足题意需x2+2ax+b2=0有两个不等实根,即Δ=4(a2-b2)>0,即a>b.又(a,b)的取法共有9种,其中满足a>b的有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),共6种,故所求的概率P=69=23.13.一个三位自然数百位、十位、个位上的数字依次为a,b,c,当且仅当a>b,b<c时,称该三位自然数为“凹数”(如213,312等).若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“凹数”的概率是()A.16B.524C.13D.724【答案】C【解析】由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理由1,2,4组成的三位自然数共6个;由1,3,4组成的三位自然数也是6个;由2,3,4组成的三位自然数也是6个.所以共有6+6+6+6=24(个).当b=1时,有214,213,314,412,312,413,共6个“凹数”;当b=2时,有324,423,共2个“凹数”.所以这个三位数为“凹数”的概率P=6+224=13.14.记连续投掷两次骰子得到的点数分别为m,n,向量a=(m,n)与向量b=(1,0)的夹角为α,则α∈0,π4的概率为()A.518B.5125C.12D.712【答案】B【解析】由题意知,向量a=(m,n)共有6×6=36(个),其中满足向量a=(m,n)与向量b=(1,0)的夹角α∈0,π4,即n<m的(m,n)可根据n的具体取值进行分类计数:第一类,当n=1时,m有5个不同的取值;第二类,当n=2时,m有4个不同的取值;第三类,当n=3时,m有3个不同的取值;第四类,当n=4时,m有2个不同的取值;第五类,当n=5时,m有1个取值.因此满足向量a=(m,n)与向量b=(1,0)的夹角α∈0,π4的(m,n)共有1+2+3+4+5=15(个),所以所求概率为1536=512.15.在所有的两位数10~99中,任取一个数,则这个数能被2或3整除的概率是________.【答案】23【解析】所有两位数共有90个,其中2的倍数有45个,3的倍数有30个,6的倍数有15个,所以能被2或3整除的共有45+30-15=60(个),所以所求概率是6090=23.16.在三行三列的方阵a11a12a13a21a22a23a31a32a33中有9个数aij(i=1,2,3,j=1,2,3),从中任取3个数,则这3个数中至少有2个数位于同行或同列的概率是()A.37B.47C.114D.1314【答案】D【解析】从9个数中任取3个数共有C39=84种不同的取法.若3个数中有2个数位于同行或同列,则有C19C14C14A22=72种不同的取法,若3个数均位于同行或同列,则有6种不同的取法.设事件M为“这3个数中至少有2个数位于同行或同列”,则事件M包含的取法共有72+6=78(种),根据古典概型的概率计算公式得P(M)=7884=1314.故选D.17.抛掷一粒骰子,观察掷出的点数,设事件A为“出现奇数点”,事件B为“出现2点”,已知P(A)=12,P(B)=16,则“出现奇数点或2点”的概率为________.【答案】23【解析】因为事件A与事件B是互斥事件,所以P(A∪B)=P(A)+P(B)=12+16=23.18.为了庆祝五四青年节,某书店制作了3种不同的精美卡片,每本书中随机装入一张卡片,集齐3种卡6片可获奖,现某人购买了5本书,则其获奖的概率为________.【答案】5081【解析】“获奖”即每种卡片至少一张,而5=1+1+3=1+2+2,有3种卡片,购买5本书,基本事件总数为35,故所求概率为3C15C14C33+3C15C24C2235=5081.19.同时掷两枚质地均匀的骰子.(1)向上的点数相同的概率为________;(2)向上的点数之和小于5的概率为________.【答案】(1)16(2)16【解析】(1)同时掷两枚骰子共有36种情况,其中向上点数相同的有6种情况,其概率为636=16;(2)向上点数之和小于5的有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种情况,其概率为636=16.20.高一年级某班有63名学生,现要选一名学生标兵,每名学生被选中是等可能的,若“选出的标兵是女生”的概率是“选出的标兵是男生”的概率的1011,则这个班的男生人数为________.【答案】33【解析】由题意可设该班的男生人数为x,则女生人数为63-x,因为每名学生被选中是等可能的,根据古典概型的概率计算公式知,“选出的标兵是女生”的概率是63-x63,“选出的标兵是男生”的概率是x63,故63-x63=1011×x63,解得x=33,故这个班的男生人数为33.21.某学校成立了数英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________.【答案】351315【解析】“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P=11+10+7+86+7+8+8+10+10+11=35.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率7是P=1-86+7+8+8+10+10+11=1315.22.从2本
本文标题:考点58随机事件的概率与古典概型教师版备战2020年高考理科数学必刷题集
链接地址:https://www.777doc.com/doc-5601165 .html