您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 2019小升初数学总复习专题训练考试题及答案
12019小升初数学总复习专题训练考试题及答案2专题一数的运算考点扫描1.四则运算的意义(1)整数加法、小数加法、分数加法的意义:把两个数合成一个数的运算;(2)整数减法、小数减法、分数减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算;(3)整数乘法的意义:求几个相同加数的和的简便运算;(4)小数乘法的意义:小数乘整数与整数乘法的意义相同;一个数乘小数,就是求这个数的十分之几、百分之几……是多少;(5)整数乘分数的意义:一个数乘分数,就是求这个数的几分之几是多少;(6)分数乘整数的意义:分数乘整数,就是求几个相同分数的和的简便运算;(7)整数除法、小数除法、分数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。2.四则运算的计算方法(1)加减法的计算方法①整数的加法:相同数位对齐,从低位加起,哪一位上的数相加满十,就要向前一位进一;②整数的减法:相同数位对齐,从低位减起,哪一位上的数不够减要从前一位上退一,在本位上加上10再减;③小数的加减法:计算小数加减法时,先把小数点对齐(也就是相同的数位对齐),再按照整数加减法的法则进行计算,最后在得数里对齐横线上的小数点,点上小数点;④分数的加减法:同分母的分数相加减,分母不变,只把分子相加减;异分母的分数相加减,先通分,然后按照同分母分数加减法的法则进行计算。(2)乘法的计算方法①整数的乘法:从低位到高位分别用因数的每一位去乘另一个因数;用一个因数的哪一位去乘,求得的数的末位就要和那一位对齐;然后把几次求得的积加起来;②小数乘法:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就3从积的右边起数出几位点上小数点;③分数乘法:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。(3)除法的计算方法①整数的除法:从被除数的高位除起,除数有几位就先看被除数的前几位,如果前几位比除数小,就多取一位再除,除到哪一位,商就写在那一位的上面;每次除得的余数必须比除数小;在求出商的最高位以后,如果被除数的哪一位上不够商1,就在那一位上写0;②小数除法:除数是整数时,按照整数除法进行计算,商的小数点要与被除数的小数点对齐。除数是小数时,要先把除数转化成整数,同时把被除数扩大相同的倍数,然后按照除数是整数的除法进行计算;③分数的除法:甲数除以乙数(0除外),等于甲数乘乙数的倒数。3.整数四则运算中各部分间的关系(1)加法:和=加数+加数;加数=和-另一个加数(2)减法:差=被减数-减数;减数=被减数-差;被减数=减数+差(3)乘法:积=因数×因数;一个因数=积÷另一个因数(4)除法:商=被除数÷除数;除数=被除数÷商;被除数=除数×商4.四则运算定律、运算性质(1)运算定律加法结合律:两个数相加,交换加数的位置,它们的和不变。即:a+b=b+a加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后面两个数相加,再和第一个相加,它们的和不变。即:a+b+c=(a+b)+c=a+(b+c)乘法交换律:两个数相乘,交换因数的位置,它们的积不变。即:a×b=b×a乘法结合律:三个数相乘,先把前两个数相乘,再乘第三个数,或者先把后面两个数相乘,再和第一个数相乘,它们的积不变。即:a×b×c=(a×b)×c=a×(b×c)乘法分配律:两个数的和与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积加起来。即:(a+b)×c=a×c+b×c;a×(b+c)=a×b+a×c4(2)运算性质减法的运算性质:a-(b+c)=a-b-ca-(b-c)=a-b+c除法的运算性质(除数不为0):a÷(b×c)=a÷b÷ca÷(b÷c)=a÷b×c(a+b)÷c=a÷c+b÷c(a-b)÷c=a÷c-b÷c5.四则混合运算的顺序四则运算分为两级:加法和减法叫做第一级运算;乘法和除法叫做第二级运算。(1)在没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,再做第一级运算;(2)在有括号的算式里,要先算小括号里面的,再算中括号里面的,最后算括号外面的。抛砖引玉【例1】求几个加数的和的简便运算叫做乘法。(判断对错)【解析】本题考察整数的乘法及应用。由乘法的意义可得:求几个相同加数和的简便运算叫乘法。答案:错误【例2】在一道减法算式中,被减数、减数与差的和是48,被减数是()A.24B.12C.16D.18【解析】本题考察整数的加法和减法。根据被减数=减数+差,可得被减数、减数与差的和是被减数的2倍,用48除以2,求出被减数是24,48÷2=24。答案:A.【例3】750÷90等于()A.商是8余3B.商是80余2C.商是8余30【解析】本题考察有余数的除法。根据整数的除法计算。750÷90=8…30,所以商是8,余数是30。答案:C.【例4】三位数除以一位数,商是()A.两位数B.三位数C.可能是三位数也可能是两位数【解析】三位数除以一位数,先用百位上的数字去除以一位数,看够不够除。5就是说百位上的数字和一位数数字比较,如果比一位数大或相等就够除,商在百位上,就是一个三位数;如果百位上的数字比一位数小,就要用百位和十位的数组成一个两位数去除以一位数,商要商在十位上,就是一个两位数。答案:C.【例5】两个数相除,商50余30,如果被除数和除数同时缩小10倍,所得的商和余数是()A.商5余3B.商50余3C.商5余30D.商50余30【解析】被除数和除数同时缩小10倍,商还是50,因为被除数缩小10倍,所以余数也缩小10倍为3。答案:B.【例6】一个数的1.8倍是36,求这个数的一半是多少?()A.36÷1.8÷2B.36×1.8÷2C.36÷1.8×0.5D.36×1.8×0.5【解析】本题考察小数四则混合运算。首先用36除以1.8,求出这个数是多少;然后用它除以2,求出这个数的一半是多少。36÷1.8÷2=20÷2=10。答案:A.【例7】把算式补充完整。4×=2430×=60÷8=6021÷=7÷3=930÷=5+80=120﹣30=909×=81÷6=60【解析】本题考察整数的乘法及应用、整数的加法和减法、整数的除法及应用、乘与除的互逆关系。(1)(2)(9)根据一个因数=积÷另一个因数求解;(3)(5)(10)根据被除数=除数×商进行求解;(4)(6)根据除数=被除数÷商求解;(7)根据一个加数=和﹣另一个加数求解;(8)根据被减数=减数+差求解。答案:4×6=2430×2=60480÷8=6021÷3=727÷3=930÷6=540+80=120120﹣30=909×9=81120÷6=60【例8】6计算下面各题(能简算的简算)。200﹣180÷15×246.71﹣6.81﹣3.19×15×÷(﹣)××+÷÷[(+)×]【解析】(1)先算除法,再算乘法,最后算减法;(2)根据连续减去两个数就是减去这两个数的和进行简算;(3)直接约分进行计算即可;(4)先计算括号的减法,再计算除法,最后计算乘法;(5)除以,乘它的倒数,再根据乘法分配律进行简算;(6)先计算小括号的加法,再计算中括号的乘法,最后算除法。答案:(1)200﹣180÷15×2(2)46.71﹣6.81﹣3.19=200﹣12×2=46.71﹣(6.81+3.19)=200﹣24=46.71﹣10=176=36.71(3)×15×(4)÷(﹣)×=9×=÷×=2=××=(5)×+÷(6)÷[(+)×]=×+×=÷[×]7=×(+)=÷=×1=×==3【例9】动物园里的一头蓝鲸一天要吃450千克食物,饲养员准备了7吨食物,够蓝鲸吃20天吗?【解析】一头蓝鲸一天要吃450千克食物,20天需要吃食物的量就是20个450千克,用450乘上20即可求出一共需要多少千克,再根据1吨=1000千克换算成以吨为单位的数,再与7吨比较即可。答案:解:450×20=9000(千克)9000千克=9吨9吨>7吨所以,不够。沙场点兵1.已知○+△=□,下列算式正确的是()A.○+□=△B.△+□=○C.□﹣△=○2.25×40的结果中有个“0”。3.计算2274+(825﹣475÷25×4),第一步应算()A.825﹣475B.475÷25C.25×4D.2274+8254.3×÷3×=()A.1B.0C.D.95.怎样简便就怎样计算:(1)3.26×5.3+0.74×5.3(2)×2.7+6.3÷5+(3)+(1.6+)×10(4)1.25×2.8×6.列式计算:(1)一个数的,比这个数的20%多1,求这个数。8(2)与的和除以1与的差,商是多少?实战演练1.(2016•广州)我们学过+、﹣、×、÷这四种运算.现在规定“*”是一种新的运算.A*B表示2A﹣B,如:4*3=4×2﹣3=5.那么7*6*5=.2.(2017•福建)一个五位数8□35△,如果这个数能同时被2、3、5整除,那么□代表的数字是,△代表的数字是.3.(2015•济南)小马虎在计算1.39加上一个一位小数时,由于错误地把数的末尾对齐,结果得到1.84.正确的得数应是()A.4.5B.6.34C.5.894.(2017•商河县)甲数是840,______,乙数是多少?如果求乙数的算式是840÷(l+),那么横线上应补充的条件是()A.甲数比乙数多B.甲数比乙数少C.乙数比甲数多D.乙数比甲数少5.(2016•龙湾区)20千米比()千米少20%。A.24B.16C.22D.256.(2017•南阳)(1)与它的倒数的差去除,商是多少?(列综合算式)(2)一个除法算式中,被除数、除数、商、余数的和是147.已知商为11,余数为2,求除数是多少?(用方程)专题二数论考点扫描数论知识包括数的奇偶性、质数、合数、数的整除、余数的性质、数位的含义、平均数、分解因数、平方数、倍数与因数。1.数的奇偶性奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数9奇数个奇数相加=奇数偶数个奇数相加=偶数(只要式子中含有偶数,那么相乘结果就是偶数)2.数的整除,常见的数的整除特征(1)2:个位是偶数;(2)3:各个数位之和是3的倍数;(3)5:个位是0或5;(4)4、25:后两位可以被4(25)整除;(5)8、125:后三位可以被8(125)整除;(6)9:各个数位之和是9的倍数;(7)7:一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数;(8)11:奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是11的倍数;(9)13:一个多位数的末三位数与末三位以前的数字所组成的数之差,可以被13整除即可被13整除;(10)17:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。3.余数的性质(1)余数的可加性:和的余数等于余数的和;(2)余数的可减性:差的余数等于余数的差;(3)余数的可乘性:积得余数等于余数的积;(4)同余的性质:对于同一个余数,如果有两个整数余数相同,那么它们的差就一定能被这个除数整除;对于同一个除数,如果有两个整数余数相同,那么它们的乘方就一定能被这个除数整数。抛砖引玉10【例1】下列各数中,()同时是3和5的倍数.A.18B.102C.45【解析】同时是3和5的倍数必须满足:末尾是0或5,并且各个数位上的和能被3整除;进而得出结论.18个位上是8,不是5的倍数,102个位上是2,不是5的倍数,45是5的倍数,4+5=9,是3的倍数。答案:C.【例2】能同时被2、3、5整除的最小两位数是,能同时被2、3整除的最小三位数是,最大三位数是.【解析】(1)根据2、3、5的倍数的倍数特征可知;同时是2、3、5的倍数的倍数,只要是个位是0,十位满足是3的倍数即可,十位满
本文标题:2019小升初数学总复习专题训练考试题及答案
链接地址:https://www.777doc.com/doc-5624774 .html