您好,欢迎访问三七文档
幂函数与二次函数基础梳理1.幂函数的定义一般地,形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.2.幂函数的图象在同一平面直角坐标系下,幂函数y=x,y=x2,y=x3,y=x12,y=x-1的图象分别如右图.3.二次函数的图象和性质解析式f(x)=ax2+bx+c(a0)f(x)=ax2+bx+c(a0)图象定义域(-∞,+∞)(-∞,+∞)值域4ac-b24a,+∞-∞,4ac-b24a单调性在x∈-b2a,+∞上单调递增在x∈-∞,-b2a上单调递减在x∈-∞,-b2a上单调递增在x∈-b2a,+∞上单调递减奇偶性当b=0时为偶函数,b≠0时为非奇非偶函数顶点-b2a,4ac-b24a对称性图象关于直线x=-b2a成轴对称图形5.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0)(2)顶点式:f(x)=a(x-h)2+k(a≠0)(3)两根式:f(x)=a(x-x1)(x-x2)(a≠0)函数y=f(x)对称轴的判断方法(1)对于二次函数y=f(x)对定义域内所有x,都有f(x1)=f(x2),那么函数y=f(x)的图象关于x=x1+x22对称.(2)一般地,函数y=f(x)对定义域内所有x,都有f(a+x)=f(a-x)成立,则函数y=f(x)的图象关于直线x=a对称(a为常数).练习检测1.(2011·安徽)设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=().A.-3B.-1C.1D.3解析∵f(x)为奇函数,∴f(1)=-f(-1)=-3.答案A2.如图中曲线是幂函数y=xn在第一象限的图象.已知n取±2,±12四个值,则相应于曲线C1,C2,C3,C4的n值依次为().A.-2,-12,12,2B.2,12,-12,-2C.-12,-2,2,12D.2,12,-2,-12答案B3.(2011·浙江)设函数f(x)=-x,x≤0,x2,x>0.若f(α)=4,则实数α等于().A.-4或-2B.-4或2C.-2或4D.-2或2解析由α≤0,-α=4或α>0,α2=4,得α=-4或α=2,故选B.答案B4.已知函数f(x)=x2-2x+2的定义域和值域均为[1,b],则b等于().A.3B.2或3C.2D.1或2解析函数f(x)=x2-2x+2在[1,b]上递增,由已知条件f1=1,fb=b,b1,即b2-3b+2=0,b1.解得b=2.答案C5.(2012·武汉模拟)若函数f(x)=(x+a)(bx+2a)(常数a、b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析f(x)=bx2+(ab+2a)x+2a2由已知条件ab+2a=0,又f(x)的值域为(-∞,4],则a≠0,b=-2,2a2=4.因此f(x)=-2x2+4.答案-2x2+46.函数f(x)=x2-2x+2在闭区间[t,t+1](t∈R)上的最小值记为g(t).(1)试写出g(t)的函数表达式;(2)作g(t)的图象并写出g(t)的最小值.[审题视点]分类讨论t的范围分别确定g(t)解析式.解(1)f(x)=(x-1)2+1.当t+1≤1,即t≤0时,g(t)=t2+1.当t1t+1,即0t1时,g(t)=f(1)=1当t≥1时,g(t)=f(t)=(t-1)2+1综上可知g(t)=t2+1≤0,t≤0,1,0t1,t2-2t+2,t≥1.(2)g(t)的图象如图所示,可知g(t)在(-∞,0]上递减,在[1,+∞)上递增,因此g(t)在[0,1]上取到最小值1.(1)二次函数y=ax2+bx+c,在(-∞,+∞)上的最值可由二次函数图象的顶点坐标公式求出;(2)二次函数y=ax2+bx+c,在[m,n]上的最值需要根据二次函数y=ax2+bx+c图象对称轴的位置,通过讨论进行求解.7.已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值.(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.解(1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5],∴x=1时,f(x)取得最小值1;x=-5时,f(x)取得最大值37.(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为直线x=-a,∵y=f(x)在区间[-5,5]上是单调函数,∴-a≤-5或-a≥5,故a的取值范围是a≤-5或a≥5.8.已知幂函数)()(*322Nmxxfmm的图象关于y轴对称,且在(0,+∞)上是减函数,求满足33)23()1(mmaa的a的取值范围.[审题视点]由幂函数的性质可得到幂指数m2-2m-3<0,再结合m是整数,及幂函数是偶数可得m的值.解∵函数在(0,+∞)上递减,∴m2-2m-3<0,解得-1<m<3.∵m∈N*,∴m=1,2.又函数的图象关于y轴对称,∴m2-2m-3是偶数,而22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,∴m=1.而f(x)=x-13在(-∞,0),(0,+∞)上均为减函数,∴(a+1)-13<(3-2a)-13等价于a+1>3-2a>0或0>a+1>3-2a或a+1<0<3-2a.解得a<-1或23<a<32.故a的取值范围为a|a<-1或23<a<32.本题集幂函数的概念、图象及单调性、奇偶性于一体,综合性较强,解此题的关键是弄清幂函数的概念及性质.解答此类问题可分为两大步:第一步,利用单调性和奇偶性(图象对称性)求出m的值或范围;第二步,利用分类讨论的思想,结合函数的图象求出参数a的取值范围.9.(2011·济南模拟)已知f(x)=-4x2+4ax-4a-a2在区间[0,1]内有最大值-5,求a的值及函数表达式f(x).求二次函数f(x)的对称轴,分对称轴在区间的左侧、中间、右侧讨论.[解答示范]∵f(x)=-4x-a22-4a,∴抛物线顶点坐标为a2,-4a.(1分)①当a2≥1,即a≥2时,f(x)取最大值-4-a2.令-4-a2=-5,得a2=1,a=±1<2(舍去);(4分)②当0<a2<1,即0<a<2时,x=a2时,f(x)取最大值为-4a.令-4a=-5,得a=54∈(0,2);(7分)③当a2≤0,即a≤0时,f(x)在[0,1]内递减,∴x=0时,f(x)取最大值为-4a-a2,令-4a-a2=-5,得a2+4a-5=0,解得a=-5或a=1,其中-5∈(-∞,0].(10分)综上所述,a=54或a=-5时,f(x)在[0,1]内有最大值-5.∴f(x)=-4x2+5x-10516或f(x)=-4x2-20x-5.(12分)求解本题易出现的问题是直接利用二次函数的性质——最值在对称轴处取得,忽视对称轴与闭区间的位置关系,不进行分类讨论.10.设函数y=x2-2x,x∈[-2,a],求函数的最小值g(a).[尝试解答]∵函数y=x2-2x=(x-1)2-1,∴对称轴为直线x=1,而x=1不一定在区间[-2,a]内,应进行讨论.当-2<a<1时,函数在[-2,a]上单调递减,则当x=a时,ymin=a2-2a;当a≥1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x=1时,ymin=-1.综上,g(a)=a2-2a,-2<a<1,-1,a≥1.
本文标题:幂函数与二次函数
链接地址:https://www.777doc.com/doc-5633289 .html