您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2017年四川省达州市中考数学试卷解析版四川初中数学人教版七年级下册教学资源
2017年四川省达州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的倒数是()A.2B.﹣2C.D.﹣【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.如图,几何体是由3个完全一样的正方体组成,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是一个小正方形,第二层是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.下列计算正确的是()A.2a+3b=5abB.C.a3b÷2ab=a2D.2a与3b不是同类项,故A不正确;(B)原式=6,故B不正确;(D)原式=8a3b6,故D不正确;故选(C)【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.4.已知直线a∥b,一块含30°角的直角三角尺如图放置.若∠1=25°,则∠2等于()A.50°B.55°C.60°D.65°【分析】由三角形的外角性质求出∠3=55°,再由平行线的性质即可得出∠2的度数.【解答】解:如图所示:由三角形的外角性质得:∠3=∠1+30°=55°,∵a∥b,∴∠2=∠3=55°;故选:B.【点评】该题主要考查了平行线的性质、三角形的外角性质;牢固掌握平行线的性质是解决问题的关键.5.某市从今年1月1日起调整居民用水价格,每立方米水费上涨.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5cm3.求该市今年居民用水的价格.设去年居民用水价格为x元/cm3,根据题意列方程,正确的是()A.B.C.D.【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5cm3,进而得出等式即可.【解答】解:设去年居民用水价格为x元/cm3,根据题意列方程:﹣=5,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.6.下列命题是真命题的是()A.若一组数据是1,2,3,4,5,则它的方差是3B.若分式方程有增根,则它的增根是1C.对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形D.若一个角的两边分别与另一个角的两边平行,则这两个角相等【分析】利用方差的定义、分式方程的增根、菱形的判定及平行的性质分别判断后即可确定正确的选项.【解答】解:A、若一组数据是1,2,3,4,5,则它的中位数是3,故错误,是假命题;B、若分式方程有增根,则它的增根是1或﹣1,故错误,是假命题;C、对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形,正确,是真命题;D、若一个角的两边分别与另一个角的两边平行,则这两个角相等或互补,故错误,是假命题,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解方差的定义、分式方程的增根、菱形的判定及平行的性质等知识,难度不大.7.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=;如图3,∵OA=2,∴OD=2×cos30°=,则该三角形的三边分别为:1,,,∵(1)2+()2=()2,∴该三角形是直角三角形,∴该三角形的面积是:×1×=.故选:A.【点评】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.8.已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】先根据二次函数的图象开口向下可知a<0,再由函数图象经过y轴正半可知c>0,利用排除法即可得出正确答案.【解答】解:二次函数y=ax2+bx+c的图象开口向下可知a<0,对称轴位于y轴左侧,a、b异号,即b>0.图象经过y轴正半可知c>0,由a<0,b>0可知,直线y=ax﹣2b经过一、二、四象限,由c>0可知,反比例函数y=的图象经过第一、三象限,故选:C.【点评】本题考查的是二次函数的图象与系数的关系,反比例函数及一次函数的性质,熟知以上知识是解答此题的关键.9.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.2017πB.2034πC.3024πD.3026π【分析】首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.【解答】解:∵AB=4,BC=3,∴AC=BD=5,转动一次A的路线长是:=2π,转动第二次的路线长是:=π,转动第三次的路线长是:=π,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:π+π+2π=6π,∵2017÷4=504…1,∴顶点A转动四次经过的路线长为:6π×504+2π=3026π,故选D.【点评】本题主要考查了探索规律问题和弧长公式的运用,掌握旋转变换的性质、灵活运用弧长的计算公式、发现规律是解决问题的关键.10.已知函数y=的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A,B两点,连接OA、OB.下列结论:①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;③无论点P在什么位置,始终有S△AOB=7.5,AP=4BP;④当点P移动到使∠AOB=90°时,点A的坐标为(2,﹣).其中正确的结论个数为()A.1B.2C.3D.4【分析】①错误.因为x1<x2<0,函数y随x是增大而减小,所以y1>y2;②正确.求出A、B两点坐标即可解决问题;③正确.设P(0,m),则B(,m),A(﹣,m),可得PB=﹣,PA=﹣,推出PA=4PB,SAOB=S△OPB+S△OPA=+=7.5;④正确.设P(0,m),则B(,m),A(﹣,m),推出PB=﹣,PA=﹣,OP=﹣m,由△OPB∽△APO,可得OP2=PBPA,列出方程即可解决问题;【解答】解:①错误.∵x1<x2<0,函数y随x是增大而减小,∴y1>y2,故①错误.②正确.∵P(0,﹣3),∴B(﹣1,﹣3),A(4,﹣3),∴AB=5,OA==5,∴AB=AO,∴△AOB是等腰三角形,故②正确.③正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,∴PA=4PB,∵SAOB=S△OPB+S△OPA=+=7.5,故③正确.④正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,OP=﹣m,∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OPA=90°,∴∠BOP=∠OAP,∴△OPB∽△APO,∴=,∴OP2=PBPA,∴m2=﹣(﹣),∴m4=36,∵m<0,∴m=﹣,∴A(2,﹣),故④正确.∴②③④正确,故选C.【点评】本题考查反比例函数综合题、等腰三角形的判定、两点间距离公式、相似三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数,构建方程解决问题,属于中考选择题中的压轴题.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.达州市莲花湖湿地公园占地面积用科学记数法表示为7.92×106平方米.则原数为7920000平方米.【分析】根据科学记数法,可得答案.【解答】解:7.92×106平方米.则原数为7920000平方米,故答案为:7920000.【点评】本题考查了科学记数法,n是几小数点向右移动几位.12.因式分解:2a3﹣8ab2=2a(a+2b)(a﹣2b).【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用平方差公式继续分解.【解答】解:2a3﹣8ab2=2a(a2﹣4b2)=2a(a+2b)(a﹣2b).故答案为:2a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=图象上的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y=图象上的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数y=图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数y=图象上的概率是:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是1<m<4.【分析】作辅助线,构建△AEC,根据三角形三边关系得:EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,所以1<m<4.【解答】解:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD是△ABC的中线,∴BD=CD,在△ADB和△EDC中,∵,∴△ADB≌△EDC,∴EC=AB=5,在△AEC中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<4,故答案为:1<m<4.【点评】本题考查了三角形三边关系、三角形全等的性质和判定,属于基础题,辅助线的作法是关键.15.甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为y=4.5x﹣90(20≤x≤36).(并写出自变量取值范围)【分析】图中线段DE所表示的函数关系式,实际上表示甲乙两人相遇后的路程之和与时间的关系.【解答】解:观察图象可知,乙的速度==2cm/s,相遇时间==20,∴图中线段DE所表示的函数关系式:y=(2.5+2)(x﹣20)=4.5x﹣90(20≤x≤36).故答案为y=4.5x﹣90(20≤x≤36).【点评】本题考查一次函数的应用、路程、速度、时间的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考填空题中的压轴题.16.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=CE;④S阴影=.其中正确结论的序号是①②④.【分析】①易求得DF长度,即可判定;②连接OP,易证OP∥CD,根据平行线性质即可判定;③易证AE=2EF,EF=2EC即可判定;④连接OG,作OH⊥FG,易证△OFG为等边△,即可求得S阴影即可解题;【解答】解:①∵AF是AB翻折而来,∴AF=AB=6,∵AD=BC=3,∴DF==3,∴F是CD中点;∴①正确;②连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴=,设OP=OF=x,则=,解得
本文标题:2017年四川省达州市中考数学试卷解析版四川初中数学人教版七年级下册教学资源
链接地址:https://www.777doc.com/doc-5637963 .html