您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2019年陕西省中考数学试卷人教版九年级下册精品试题
海量资源尽在星星文库:年陕西省中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算:(﹣3)0=()A.1B.0C.3D.﹣2.(3分)如图,是由两个正方体组成的几何体,则该几何体的俯视图为()A.B.C.D.3.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°4.(3分)若正比例函数y=﹣2x的图象经过点O(a﹣1,4),则a的值为()A.﹣1B.0C.1D.25.(3分)下列计算正确的是()A.2a2•3a2=6a2B.(﹣3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a26.(3分)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()海量资源尽在星星文库:.2+B.+C.2+D.37.(3分)在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)8.(3分)如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为()A.1B.C.2D.49.(3分)如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°10.(3分)在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y轴对称,则符合条件的m,n的值为()A.m=,n=﹣B.m=5,n=﹣6C.m=﹣1,n=6D.m=1,n=﹣2二、填空题(共4小题,每小题3分,共12分)11.(3分)已知实数﹣,0.16,,π,,,其中为无理数的是.12.(3分)若正六边形的边长为3,则其较长的一条对角线长为.13.(3分)如图,D是矩形AOBC的对称中心,A(0,4),B(6,0),若一个反比例函数的图象经过点D,交AC于点M,则点M的坐标为.海量资源尽在星星文库:.(3分)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为.三、解答题(共78分)15.(5分)计算:﹣2×+|1﹣|﹣()﹣216.(5分)化简:(+)÷17.(5分)如图,在△ABC中,AB=AC,AD是BC边上的高.请用尺规作图法,求作△ABC的外接圆.(保留作图痕迹,不写作法)18.(5分)如图,点A,E,F,B在直线l上,AE=BF,AC∥BD,且AC=BD,求证:CF=DE.海量资源尽在星星文库:.(7分)本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图,填出本次所抽取学生四月份“读书量”的众数为.(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.20.(7分)小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动带点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测倾器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高度AB.(小平面镜的大小忽略不计)海量资源尽在星星文库:.(7分)根据记录,从地面向上11km以内,每升高1km,气温降低6℃;又知在距离地面11km以上高空,气温几乎不变.若地面气温为m(℃),设距地面的高度为x(km)处的气温为y(℃)(1)写出距地面的高度在11km以内的y与x之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为﹣26℃时,飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12km时,飞机外的气温.22.(7分)现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球.(1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率;(2)小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.23.(8分)如图,AC是⊙O的直径,AB是⊙O的一条弦,AP是⊙O的切线.作BM=AB并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.(1)求证:AB=BE;(2)若⊙O的半径R=5,AB=6,求AD的长.24.(10分)在平面直角坐标系中,已知抛物线L:y=ax2+(c﹣a)x+c经过点A(﹣3,0)和点B(0,﹣6),L关于原点O对称的抛物线为L′.海量资源尽在星星文库:(1)求抛物线L的表达式;(2)点P在抛物线L′上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若△POD与△AOB相似,求符合条件的点P的坐标.25.(12分)问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)海量资源尽在星星文库:年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)计算:(﹣3)0=()A.1B.0C.3D.﹣【考点】6E:零指数幂.菁优网版权所有【分析】直接利用零指数幂的性质计算得出答案.【解答】解:(﹣3)0=1.故选:A.【点评】此题主要考查了零指数幂的性质,正确掌握零指数幂的性质是解题关键.2.(3分)如图,是由两个正方体组成的几何体,则该几何体的俯视图为()A.B.C.D.【考点】U2:简单组合体的三视图.菁优网版权所有【分析】找到从上面看所得到的图形即可.【解答】解:从上往下看,所以小正方形应在大正方形的右上角.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()海量资源尽在星星文库:.52°B.54°C.64°D.69°【考点】JA:平行线的性质.菁优网版权所有【分析】依据平行线的性质以及角平分线的定义,即可得到∠BOC=64°,再根据平行线的性质,即可得出∠2的度数.【解答】解:∵l∥OB,∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC平分∠AOB,∴∠BOC=64°,又l∥OB,且∠2与∠BOC为同位角,∴∠2=64°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.4.(3分)若正比例函数y=﹣2x的图象经过点O(a﹣1,4),则a的值为()A.﹣1B.0C.1D.2【考点】F8:一次函数图象上点的坐标特征.菁优网版权所有【分析】由正比例函数图象过点O,可知点O的坐标满足正比例函数的关系式,由此可得出关于a的一元一次方程,解方程即可得出结论.【解答】解:∵正比例函数y=﹣2x的图象经过点O(a﹣1,4),∴4=﹣2(a﹣1),解得:a=﹣1.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,解题的关键是将点O的坐标代入正比例函数关系得出关于a的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,将点的坐标代入函数解析式中找出方程是关键.5.(3分)下列计算正确的是()A.2a2•3a2=6a2B.(﹣3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2【考点】4I:整式的混合运算.菁优网版权所有【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.海量资源尽在星星文库:【解答】解:∵2a2•3a2=6a4,故选项A错误,∵(﹣3a2b)2=9a4b2,故选项B错误,∵(a﹣b)2=a2﹣2ab+b2,故选项C错误,∵﹣a2+2a2=a2,故选项D正确,故选:D.【点评】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.6.(3分)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.3【考点】KF:角平分线的性质.菁优网版权所有【分析】过点D作DF⊥AC于F如图所示,根据角平分线的性质得到DE=DF=1,解直角三角形即可得到结论.【解答】解:过点D作DF⊥AC于F如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2,故选:A.【点评】本题考查了角平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.海量资源尽在星星文库:.(3分)在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)【考点】F9:一次函数图象与几何变换.菁优网版权所有【分析】根据“上加下减”的原则求得平移后的解析式,令y=0,解得即可.【解答】解:由“上加下减”的原则可知,将函数y=3x的图象向上平移6个单位长度所得函数的解析式为y=3x+6,∵此时与x轴相交,则y=0,∴3x+6=0,即x=﹣2,∴点坐标为(﹣2,0),故选:B.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.8.(3分)如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为()A.1B.C.2D.4【考点】L7:平行四边形的判定与性质;LB:矩形的性质.菁优网版权所有【分析】由题意可证EG∥BC,EG=2,HF∥AD,HF=2,可得四边形E
本文标题:2019年陕西省中考数学试卷人教版九年级下册精品试题
链接地址:https://www.777doc.com/doc-5640813 .html