您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 成都市近十年中考数学二次函数压轴题(含答案)
二次函数中考压轴题【2018成都中考】如图,在平面直角坐标系xOy中,以直线512x为对称轴的抛物线2yaxbxc与直线:0lykxmk交于1,1A,B两点,与y轴交于0,5C,直线l与y轴交于D点.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F、G是抛物线上位于对称轴右侧的一点,若34AFFB,且BCG与BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使90APB,求k的值.解:(1)由题可得:5,225,1.bacabc解得1a,5b,5c.∴二次函数解析式为:255yxx.(2)作AMx轴,BNx轴,垂足分别为,MN,则34AFMQFBQN.32MQ,2NQ∴,911,24B,1,91,24kmkm∴,解得1,21,2km,1122tyx∴,102D,.同理,152BCyx.BCDBCGSS,∴①//DGBC(G在BC下方),1122DGyx,2115522xxx∴,即22990xx,123,32xx∴.52x,3x∴,3,1G∴.②G在BC上方时,直线23GG与1DG关于BC对称.1211922GGyx∴,21195522xxx∴,22990xx∴.52x,93174x∴,931767317,48G∴.综上所述,点G坐标为13,1G;2931767317,44G.(3)由题意可得:1km.1mk∴,11ykxk∴,2155kxkxx∴,即2540xkxk.11x∴,24xk,24,31Bkkk∴.设AB的中点为'O,P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点.OPx∴轴,P∴为MN的中点,5,02kP∴.AMPPNB∽,AMPNPMBN∴,AMBNPNPM∴,255314122kkkkk∴1,即23650kk,960.0k,64626163k∴.【2017成都中考】如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.解:(1)由题意抛物线的顶点C(0,4),A(2,0),设抛物线的解析式为y=ax2+4,把A(2,0)代入可得a=﹣,∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.【2016成都中考】如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).【2015成都中考】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.解:(1)A(-1,0)∵直线l经过点A,∴0=-k+b,b=k∴y=kx+k令ax2-2ax-3a=kx+k,即ax2-(2a+k)x-3a-k=0∵CD=4AC,∴点D的横坐标为4∴-3-ka=-1×4,∴k=a∴直线l的函数表达式为y=ax+a(2)过点E作EF∥y轴,交直线l于点F设E(x,ax2-2ax-3a),则F(x,ax+a)EF=ax2-2ax-3a-(ax+a)=ax2-3ax-4aS△ACE=S△AFE-S△CFE=12(ax2-3ax-4a)(x+1)-12(ax2-3ax-4a)x=12(ax2-3ax-4a)=12a(x-32)2-258a∴△ACE的面积的最大值为-258a∵△ACE的面积的最大值为54∴-258a=54,解得a=-25(3)令ax2-2ax-3a=ax+a,即ax2-3ax-4a=0解得x1=-1,x2=4∴D(4,5a)∵y=ax2-2ax-3a,∴抛物线的对称轴为x=1设P(1,m)①若AD是矩形的一条边,则Q(-4,21a)m=21a+5a=26a,则P(1,26a)∵四边形ADPQ为矩形,∴∠ADP=90°∴AD2+PD2=AP2∴52+(5a)2+(1-4)2+(26a-5a)2=(-1-1)2+(26a)2即a2=17,∵a<0,∴a=-77∴P1(1,-2677)②若AD是矩形的一条对角线则线段AD的中点坐标为(32,5a2),Q(2,-3a)m=5a-(-3a)=8a,则P(1,8a)∵四边形APDQ为矩形,∴∠APD=90°∴AP2+PD2=AD2∴(-1-1)2+(8a)2+(1-4)2+(8a-5a)2=52+(5a)2即a2=14,∵a<0,∴a=-12∴P2(1,-4)综上所述,以点A、D、P、Q为顶点的四边形能成为矩形xyABDlCQPOxyOABDlCEFxyOABDlCPQ点P的坐标为(1,-2677)或(1,-4)【2014成都中考】如图,已知抛物线)4)(2(8xxky(k为常数,且0k)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线bxy33与抛物线的另一交点为D.(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少?解:(1)抛物线y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+b过点B(4,0),∴﹣×4+b=0,解得b=,∴直线BD解析式为:y=﹣x+.当x=﹣5时,y=3,∴D(﹣5,3).∵点D(﹣5,3)在抛物线y=(x+2)(x﹣4)上,∴(﹣5+2)(﹣5﹣4)=3,∴k=.(2)由抛物线解析式,令x=0,得y=k,∴C(0,﹣k),OC=k.因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△ABP.①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠PAB,即:,∴y=x+k.∴D(x,x+k),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=2(与点A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:k=.②若△ABC∽△ABP,则有∠ABC=∠PAB,如答图2﹣2所示.与①同理,可求得:k=.综上所述,k=或k=.(3)由(1)知:D(﹣5,3),如答图2﹣2,过点D作DN⊥x轴于点N,则DN=3,ON=5,BN=4+5=9,∴tan∠DBA===,∴∠DBA=30°.过点D作DK∥x轴,则∠KDF=∠DBA=30°.过点F作FG⊥DK于点G,则FG=DF.由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,∴t=AF+FG,即运动时间等于折线AF+FG的长度.由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.过点A作AH⊥DK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点.∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,∴y=
本文标题:成都市近十年中考数学二次函数压轴题(含答案)
链接地址:https://www.777doc.com/doc-5653151 .html