您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 选修2-3综合测试题(卷)带答案解析
数学试卷一、选择题1.随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于()A.B.0C.1D.2.设随机变量ξ服从正态分布N(0,1),则下列结论不正确的是()A.P(|ξ|<a)=P(|ξ|<a)+P(|ξ|=a)(a>0)B.P(|ξ|<a)=2P(ξ<a)﹣1(a>0)C.P(|ξ|<a)=1﹣2P(ξ<a)(a>0)D.P(|ξ|<a)=1﹣P(|ξ|>a)(a>0)3.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若Χ2的观测值为6.64,而P(Χ2≥6.64)=0.010,故我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误D.以上三种说法都不正确4.将3个不同的小球放入4个盒子中,则不同放法种数有()A.81B.64C.12D.145.以正方体的顶点为顶点的三棱锥的个数是()A.C81C73B.C84C.C84﹣6D.C84﹣126.的展开式中,含x的正整数次幂的项共有()A.4项B.3项C.2项D.1项7.在5付不同手套中任取4只,4只手套中至少有2只手套原来是同一付的可能()A.190B.140C.130D.308.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P移动5次后位于点(2,3)的概率为()A.B.C.D.9.(1﹣x3)(1+x)10的展开式中,x5的系数是()A.207B.208C.209D.21010.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作.若其中甲、乙两名支援者都不能从事翻译工作,则选派方案共有()A.280种B.240种C.180种D.96种11.将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率P(A|B)等于()A.B.C.D.12.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是14.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有种.15.在100件产品中有5件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,则第2次抽出正品的概率是.16.已知,则a0+a2+a4+a6=三.解答题:本大题共6小题,共70分.17.求(1+x)3+(1+x)4+(1+x)5+…+(1+x)20的展开式中x3的系数.18.设离散型随机变量X的所有可能值为1,2,3,4,且P(x=k)=ak,(k=1,2,3,4)(1)求常数a的值;(2)求X的分布列;(3)求P(2≤x<4).19.在直角坐标系中,已知三点P(2,2),Q(4,﹣4),R(6,0).(1)将P、Q、R三点的直角坐标化为极坐标;(2)求△PQR的面积.20.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如表资料:日期3月1日3月2日3月3日3月4日3月5日温差x(℃)101113128发芽数y(颗)2325302616(1)若选取的是3月1日与3月5日的两组数据,请根据3月2日至3月4日的数据,求出y关于x的线性回归方程y=bx+a;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?21.某次象棋比赛的决赛在甲乙两名旗手之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分;比赛进行五局,积分有超过5分者比赛结束,否则继续进行,根据以往经验,每局甲赢的概率为,乙赢的概率为,且每局比赛输赢互不受影响.若甲第n局赢、平、输的得分分别记为an=2,an=1,an=0,n∈N*,1≤n≤5,令Sn=a1+a2+…+an(1)求S3=5的概率.(2)求S5=7的概率.22.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑色球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.2015-2016学年河北省衡水市枣强中学高二(下)期中数学试卷(理科)参考答案与试题解析一、选择题1.随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于()A.B.0C.1D.【考点】二项分布与n次独立重复试验的模型.【分析】根据随机变量符合二项分布,根据二项分布的期望和方差的公式和条件中所给的期望和方差的值,得到关于n和p的方程组,解方程组得到要求的未知量p.【解答】解:∵ξ服从二项分布B~(n,p)Eξ=300,Dξ=200∴Eξ=300=np,①;Dξ=200=np(1﹣p),②可得1﹣p==,∴p=1﹣故选D2.设随机变量ξ服从正态分布N(0,1),则下列结论不正确的是()A.P(|ξ|<a)=P(|ξ|<a)+P(|ξ|=a)(a>0)B.P(|ξ|<a)=2P(ξ<a)﹣1(a>0)C.P(|ξ|<a)=1﹣2P(ξ<a)(a>0)D.P(|ξ|<a)=1﹣P(|ξ|>a)(a>0)【考点】正态分布曲线的特点及曲线所表示的意义.【分析】随机变量ξ服从正态分布N(0,1),曲线关于x=0对称,根据概率和正态曲线的性质,可得到结论.【解答】解:∵P(|ξ|<a)=P(|ξ|≤a)=P(|ξ|<a)+P(|ξ|=a),∴A正确;∵P(|ξ|<a)=P(﹣a<ξ<a)=P(ξ<a)﹣P(ξ<﹣a)=P(ξ<a)﹣P(ξ>a)=P(ξ<a)﹣(1﹣P(ξ<a))=2P(ξ<a)﹣1,∴B正确,C不正确;∵P(|ξ|<a)+P(|ξ|>a)=1,∴P(|ξ|<a)=1﹣P(|ξ|>a)(a>0),∴D正确故选C.3.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若Χ2的观测值为6.64,而P(Χ2≥6.64)=0.010,故我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误D.以上三种说法都不正确【考点】独立性检验的基本思想.【分析】根据独立性检验的概念与意义,结合题目中的数据,对选项中的命题进行分析、判断正误即可.【解答】解:Χ2的观测值为6.64,而P(Χ2≥6.64)=0.010,故我们有99%的把握认为吸烟与患肺病有关系,不表示有99%的可能患有肺病,故A不正确;有99%的把握认为吸烟与患肺病有关系时,不能说某人吸烟,他就有99%的可能患有肺病,故B不正确;从统计量中求出有95%的把握认为吸烟与患肺病有关系,即表示有5%的可能性使得推断出现错误,故C正确.故选:C.4.将3个不同的小球放入4个盒子中,则不同放法种数有()A.81B.64C.12D.14【考点】排列、组合及简单计数问题.【分析】第一个小球有4众不同的方法,第二个小球也有4众不同的方法,第三个小球也有4众不同的放法,即每个小球都有4种可能的放法,根据分步乘法原理得到结果.【解答】解:本题是一个分步计数问题对于第一个小球有4众不同的方法,第二个小球也有4众不同的方法,第三个小球也有4众不同的放法,即每个小球都有4种可能的放法,根据分步计数原理知共有即4×4×4=64故选B.5.以正方体的顶点为顶点的三棱锥的个数是()A.C81C73B.C84C.C84﹣6D.C84﹣12【考点】计数原理的应用.【分析】从8个顶点中选4个,共有C84种结果,在这些结果中,有四点共面的情况,6个表面有6个四点共面,6个对角面有6个四点共面,用所有的结果减去不合题意的结果,得到结论.【解答】解:首先从8个顶点中选4个,共有C84种结果,在这些结果中,有四点共面的情况,6个表面有6个四点共面,6个对角面有6个四点共面,∴满足条件的结果有C84﹣6﹣6=C84﹣12,故选D.6.的展开式中,含x的正整数次幂的项共有()A.4项B.3项C.2项D.1项【考点】二项式系数的性质.【分析】首先分析题目已知,是含有和的和的12次幂的形式,求含x的正整数次幂的项的个数.考虑到根据二项式定理的性质,写出的展开式的通项,然后使得x的幂为正整数,即可求出满足条件的个数.【解答】解:根据二项式定理的性质得:的展开式的通项为,故含x的正整数次幂的项即6(0≤r≤12)为整数的项,共有3项,即r=0或r=6或r=12.故选B.7.在5付不同手套中任取4只,4只手套中至少有2只手套原来是同一付的可能()A.190B.140C.130D.30【考点】排列、组合的实际应用.【分析】根据题意,使用间接法:首先计算从5付即10只不同的手套中任取4只的取法数目,再计算取出的4只没有是一双的取法数目,进而相减计算可得答案.【解答】解:根据题意,从5付即10只不同的手套中任取4只,有C104=210种不同的取法,而先从5付中取4付,取出的4只没有是一付即4双中各取1只的取法有5×2×2×2×2=80种;则至少有两只是一双的不同取法有210﹣80=130种.故选:C.8.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P移动5次后位于点(2,3)的概率为()A.B.C.D.【考点】等可能事件.【分析】从条件知质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是,本题考查的是独立重复试验,因此质点P移动5次后位于点(2,3)质点在移动过程中向右移动2次向上移动3次.【解答】解:质点在移动过程中向右移动2次向上移动3次,因此质点P移动5次后位于点(2,3)的概率为故选B9.(1﹣x3)(1+x)10的展开式中,x5的系数是()A.207B.208C.209D.210【考点】二项式定理的应用.【分析】先将多项式展开,分析可得(1﹣x3)(1+x)10展开式中的x5的系数是(1+x)10的展开式中的x5的系数减去(1+x)10的x2的系数,利用二项式定理可得(1+x)10展开式的含x5的系数与含x2的系数,相减可得答案.【解答】解:(1﹣x3)(1+x)10=(1+x)10﹣x3(1+x)10则(1﹣x3)(1+x)10展开式中的x5的系数是(1+x)10的展开式中的x5的系数减去(1+x)10的x2的系数,由二项式定理,(1+x)10的展开式的通项为Tr+1=C10rxr令r=5,得(1+x)10展开式的含x5的系数为C105,令r=2,得其展开式的含x2的系数为C102则x5的系数是C105﹣C102=252﹣45=207故选A.10.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作.若其中甲、乙两名支援者都不能从事翻译工作,则选派方案共有()A.280种B.240种C.180种D.96种【考点】排列、组合的实际应用.【分析】根据题意,使用间接法,首先计算从6名志愿者中选出4人分别从事四项不同工作的情况数目,再分析计算其包含的甲、乙两人从事翻译工作的情况数目,进而由事件间的关系,计算可得答案.【解答】解:根据题意,由排列可得,从6名志愿者中选出4人分别从事四项不同工作,
本文标题:选修2-3综合测试题(卷)带答案解析
链接地址:https://www.777doc.com/doc-5656593 .html