您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 工程测量-第5章-测量误差的基本知识
张世富菏泽学院资源与环境系第5章测量误差的基本知识土木工程测量【知识点】系统误差、偶然误差及其特性、中误差、极限误差、相对误差、误差传播定律、算术平均值及其中误差、加权平均值。【重点】偶然误差的传播规律。【难点】误差传播律的应用,加权平均值及其中误差。§5-1测量误差概述§5-2评定精度的指标§5-3误差传播定律§5-4等精度直接观测值的最可靠值§5-5权与加权平均值第5章测量误差的基本知识测量实践中可以发现,测量结果不可避免的存在误差,比如:1、对同一量多次观测,其观测值不相同。2、观测值之和不等于理论值:三角形α+β+γ≠180°闭合水准测量∑h≠0§5-1测量误差概述1、测量误差:观测值:对某一被观测量进行直接观测所获得的数值。真值:任一观测量,客观存在的能代表其大小的数值(1)误差——真值与观测值之差(严格:真误差)△=L观–L理=L-X(2)误差:一般把某一量的准确值与近似值之差也称为~。一、测量误差及其来源2、观测条件—产生误差原因等精度观测:观测条件相同的各次观测。不等精度观测:观测条件不相同的各次观测。(1)测量仪器(2)观测者(3)外界条件的变化观测条件3、观测误差产生的原因测量上真误差如何得到:△=(D往-D返)–0△=L观–L理=L-XBACABCDABh△=(A+B+C)–180º△=(A+B+C+D)–360º△=(hAB+hBA)–0观测误差:ABDABDBA二、测量误差的分类(1)系统误差的特性:误差的绝对值为一常量,或按一定的规律变化;误差的正负号保持不变,或按一定的规律变化;误差的绝对值随着单一观测值的倍数而积累。测量误差按其性质可分为系统误差、偶然误差和粗差。1、系统误差:在相同的观测条件下,对某一未知量进行一系列观测,若误差的符号和大小按照一定的规律变化,或保持不变,这种误差被称之为系统误差。(2)系统误差的示例:钢尺—尺长、温度、倾斜改正水准仪—i角误差,其值大小与视线长度成正比,且符号保持不变;经纬仪—c角、i角误差,其值大小随视线竖直角的大小而变化,且符号不变;注意:系统误差具有累积性,对测量成果影响较大。(3)系统误差的消除和削弱的方法:1)校正仪器;2)观测值加改正数;3)采用一定的观测方法加以抵消或削弱。在相同的观测条件下,对某一未知量进行一系列观测,如果观测误差的大小和符号没有明显的规律性,则称其为偶然误差。(1)特性:就单个偶然误差来看,其符号和大小没有一定的规律,但对大量的偶然误差而言,它们遵循正态分布的统计规律。偶然误差是不可避免的,是由于人力所不能控制的因素或无法估计的因素共同引起的测量误差。人力所不能控制的因素:人眼的分辨力、仪器的极限精度和气象因素等。2、偶然误差(2)偶然误差的示例:1)距离测量ΔNo9.49.79.59.69.39.29.60.1-0.20-0.10.20.3-0.11234567NL△△=L观–L理=L-X010D9.5cm=X1.71.61.51589中丝读数:15901591(2)偶然误差的示例:1)读数误差(水准测量)总结:偶然误差不能通过采用一定措施加以消除,只能通过提高观测精度和合理地处理观测数据减少其对测量成果的影响。3)照准误差4)整平误差(2)偶然误差的示例:3、粗差(错误)观测成果中存在的粗大误差称之为粗差(错误)。(1)产生的原因:较多可能由于作业人员疏忽大意、失职而引起,如大数读错、读数被记录员记错、照错了目标等;也可能是仪器自身或受外界干扰发生故障引起;(2)粗差对观测成果的影响极大,所以在测量成果中绝对不允许有其存在。(3)发现粗差的方法:进行必要的重复观测,通过多余观测条件,进行检核验算;严格按照国家有关部门制定的各种测量规范进行作业等。§3.1观测误差的分类总结:在测量工作中,一般需要进行多余观测,发现粗差,将其剔除或重测。三、偶然误差的特性在测量的成果中:系统误差的影响可以消除或减弱,粗差可以发现并剔除,偶然误差则无法消除,合理处理偶然误差需要研究它们的规律特性。180iiiLXL真误差观测值与理论值之差在相同的观测条件下,观测了96个三角形的全部角由于存在偶然误差,各三角形的内角之和L不一定等于真值X(180),其差即为真误差Δ:1、表示偶然误差分布的统计表误差区间d△负误差正误差合计个数k频率k/n个数k频率k/n个数k频率k/n0.0″~0.5″0.5″~1.0″1.0″~1.5″1.5~2.0″2.0″~2.5″2.5″~3.0″3.0″以上1913852100.19790.13540.08330.05210.02080.01040.00002012942100.20830.12500.09380.04170.02080.01040.000039251794200.40620.26040.17710.09380.04160.02080.0000合计480.500480.500961.000将所有三角形内角和的误差范围分成若干小的区间d△(如表中的0.5″);统计出每一个小区间正负误差出现的误差个数k及频率,频率=个数k/总数n(n=96),得出统计表5-1。180iiiLXL表5-1三角形内角和真误差统计表2、表示偶然误差分布的直方图有斜线的矩形面积:为误差出现在+0.5+1.0之间的频率.横坐标—以偶然误差为横坐标,纵坐标—以频率d△(频率/组距)为纵坐标,各矩形的面积=误差出现在该区间的频率(kn)图5-1误差分布的频率直方图3、偶然误差概率分布曲线----正态分布曲线当直方图中:n→∞,d△各区间的频率也就趋于一个完全确定的数值——概率.若d△→0时,则直方图成为误差概率曲线——正态分布曲线。它服从于正态分布。1)正态分布曲线的方程式为:22221)(ef式中:△为偶然误差;σ(0)称为标准差,是与观测条件有关的一个参数。它的大小可以反映观测精度的高低。标准差σ定义为:nn][lim2)误差概率曲线叫作偶然误差的理论分布在一定的观测条件下,测量误差对应着一定误差的分布,当观测条件不同时,其误差分布曲线的形态将随之改变。在图5-3中,曲线I、II分别表示两组在不同观测条件下得到的两组误差分布曲线,均属于正态分布。曲线I较陡峭,其拐点的横坐标值1小于曲线II拐点的横坐标值2,说明对应于曲线I的误差分布比较密集,或称离散度较小,观测值精度较高。曲线II较为平缓,误差分布离散度较大,观测值精度较低。图5-3不同精度的误差分布曲线(1)有限性:在一定的观测条件下,偶然误差的绝对值不会超过一定的限值;(2)集中性:即绝对值较小的误差比绝对值较大的误差出现的概率大;(3)对称性:绝对值相等的正、负误差出现的概率相同;(4)抵偿性:当观测次数无限增多时,偶然误差的算术平均值趋近于零,即0limnn(5-4)4、偶然误差的特性:式中,。在数理统计中,也称偶然误差的数学期望为零,即E(Δ)=0。n21误差处理的原则:1、粗差:是进行必要的多余观测,通过精度检核并加以剔除。2、系统误差:一是在观测方法或程序上采用一定措施来消除或减弱系统误差的影响,二是对测量结果加以改正。3、偶然误差:通过提高观测精度和合理地处理观测数据减少其对测量成果的影响。目录5.2评定精度的指标研究测量误差理论的主要任务之一是:评定测量成果的精度。1、精度:当消除了系统误差和剔除了粗差之后,精度就是指一组观测值误差分布的密集与离散程度。误差分布密集,测量精度高;误差分布离散,测量精度低。2、评定测量成果精度的常用指标:方差和中误差极限误差相对误差。一、方差和中误差定义:在相同观测条件下,对某量(真值为X)进行n次独立观测,观测值为:L1、L2、…、Ln;其相应的真误差为Δ1,Δ2,……,Δn;则定义该组观测值的XLiin,...2232221式中:)55(nlimDn2)65(nlimtn1、方差:2、标准差(中误差):3、中误差的估值m:(标准差的估值)按有限次观测的偶然误差求得的标准差,即标准差的估值.其计算公式为:)75(nˆm由上述计算结果中可以看出,1组的中误差较小,所以观测精度高于2组。在测量工作中,普遍采用中误差来评定测量成果的精度。【例题5-1】1、2两组分别用相同的观测条件观测了某角度各六次,与真值比较得真误差分别为:1组:+2″、+1″、-2″、-3″、-2″、-3″;2组:+5″、-4″、+1″、-4″、-3″、+6″。试分析两组观测值的精度。解:用中误差公式(5-7)计算得1.466)3()4(14)(5nm.6)3(2)()3(2)(12nm2222222222222132中误差m的几何意义:为偶然误差分布曲线两个拐点的横坐标,其值小,则观测精度高,其值大,则观测精度较低。注意:一组等精度观测值具有相同的中误差在计算中误差m时应取2~3位有效数字,并在数值前冠以±号,数值后写上“单位”。1、定义:由偶然误差的特性可知,在一定的观测条件下,偶然误差的绝对值不会超过一定的限值。这个限值就是极限误差。二、极限误差在大量同精度观测的一组误差中,差落在不同区间的概率分别为:P(-Δ+)≈68.3%,即绝对值的偶然误差,其出现的概率为31.7%;P(-2Δ+2)≈95.5%,即绝对值2的偶然误差,其出现的概率为4.5%;P(-3Δ+3)≈99.7%,即绝对值3的偶然误差,出现的概率仅为3‰。2、通常以三倍的中误差作为偶然误差的极限误差:(大于三倍中误差的偶然误差Δ出现的机会只有3‰,是小概率事件,在有限的观测次数中,实际上不大可能出现)m33限3、通常取2m作为偶然误差的容许值,称容许误差:(大于二倍中误差的偶然误差Δ出现的机会只有4.5%))8-5(m2容如果某观测值的偶然误差大于了规定的容许误差,则认为该观测值不可靠,应舍去不用或重测。1、定义:相对误差K等于绝对误差的绝对值与相应观测值D之比,它是一个无量纲的量,通常用分子为1的分数表示:三、相对误差一般情况:角度、高差的误差用绝对误差(m)表示,量距误差用相对误差K表示。绝对误差:中误差、真误差和极限误差均是绝对误差,它们都有符号,并且单位与观测值相同。当DAB=100.00±0.02m,DCD=200.00±0.02m,两边长的测量精度相同的吗?此时用中误差衡量两者的精度很不适合。)(T1DK95观测值绝对误差相对误差2、相对中误差与绝对误差一样,相对误差对应地分为相对真误差、相对中误差和相对极限误差。当上式中绝对误差为中误差m时,K称为相对中误差,即)(mD1DmK105中误差[例]已知:D1=100m,m1=±0.02m,D2=200m,m2=±0.02m,求:K1,K2解:精度高。,10000120002.05000110002.0222111DmKDmK当绝对误差为极限误差时,K称为相对极限误差。测量中取相对极限误差为相对中误差的两倍,即3、相对极限误差)(2mD12KK115中误差限目录4、相对较差在距离测量中往返测量的相对较差要小于相对容许误差,相对较差是往、返测差值与均值之比,相对较差=相对误差)(DD1DDDDDK125均值均值均值返往用来反映距离测量精度的相对误差,其值越小,观测结果越可靠。若相对误差大于相对极限误差,则距离必须重测。目录概念误差传播定律:阐述观测值的中误差与其函数中误差之间传播规律的定律。函数形式倍数函数和差函数线性函数一般函数§5.3误差传播定律观测值的函数---又称为间接观测量一、误差传播定律设Z是独立变量x1,x2,…,xn的函数,即)()xxx(fZn13521
本文标题:工程测量-第5章-测量误差的基本知识
链接地址:https://www.777doc.com/doc-5671188 .html