您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 石油/天然气工业 > LWD随钻测井技术最新进展
随钻测井技术新进展2012年4月·北京©2010BakerHughesIncorporated.AllRightsReserved.2贝克休斯随钻测井工具系列OnTrakTM–随钻自然伽玛和电阻率测井及钻井动态信息AziTrakTM–随钻方位电阻率测井LithoTrakTM–随钻中子密度孔隙度测井SoundTrakTM–随钻声波测井TesTrakTM–随钻地层压力测试器StarTrakTM–随钻高分辨率电阻率成像测井MagTrakTM–随钻核磁共振测井ZoneTrakTM–随钻钻头电阻率测井©2010BakerHughesIncorporated.AllRightsReserved.3贝克休斯公司随钻地层评价技术©2010BakerHughesIncorporated.AllRightsReserved.4OnTrakTM–随钻自然伽玛和电阻率测井AziTrakTM–随钻方位电阻率测井LithoTrakTM–随钻中子密度孔隙度测井SoundTrakTM–随钻声波测井TesTrakTM–随钻地层压力测试器StarTrakTM–随钻高分辨率电阻率成像测井MagTrakTM–随钻核磁共振测井ZoneTrakTM–钻头电阻率贝克休斯公司成像技术©2010BakerHughesIncorporated.AllRightsReserved.5贝克休斯随钻测井工具组合BCPMAutoTrakG3双向通讯和导电模块AutoTrakG3导向短节ATKG3OnTrak™OnTrak传感器模块井筒压力4.7m(15.4ft)自然伽玛+自然伽玛成像5.0m(16.4ft)电阻率6.1m(20.0ft)方位7.8m(25.6ft)振动和粘滑7.8m(25.6ft)TesTrak™井斜1.0m(3.1ft)地层压力测试器LithoTrakTM体积密度+密度成像15.6m(51.2ft)井径校正中子孔隙度18.0m(59.0ft)井径16.0m(52.5ft)22.1m(72.5ft)45.0m(147.6ft)34.3m(112.5ft)核磁共振声波MagTrak™SoundTrak™©2010BakerHughesIncorporated.AllRightsReserved.7OnTrak–随钻自然伽玛和电阻率测井©2010BakerHughesIncorporated.AllRightsReserved.8TransmitterReceiver1Receiver2Signal1Signal2Amplitude1Amplitude2Amplitude1Amplitude2Attenuation=PhaseDifference发射器发射电磁波电磁波信号进入地层传播方向与仪器方向垂直相交电磁波在地层传播过程中,频率保持不变,而相位和波幅则因地层电阻率而改变接收器接收电磁波测量相位的改变测量幅度的衰减电阻率测量原理©2010BakerHughesIncorporated.AllRightsReserved.9•仪器特点–双收四发–2个发射频率:2MHz和400kHz–2种收发距离:近(23”),远(35”)–2套测量参数:相位和衰减–补偿接收装置测量结果–32条原始测量曲线–8条补偿电阻率曲线•参数–适用于各种类型泥浆–可用于57/8”-26”井眼的测量–最大测量温度150ºC电阻率测量原理©2010BakerHughesIncorporated.AllRightsReserved.10随钻测井与电缆测井的电阻率对比WIRELINELOG01LOG01LOG01GAMMARAY0150x080x090x000x010x020x030x040x050x060x070x080DEPTHMETRES2MHzShortSpaced2MHzLongSpaced400kHzShortSpaced400KHzLongSpacedLOGOhmm01PHASEDIFFERENCERESISTIVITIESOhmm0.22000LOGOhmm01ATTENUATIONRESISTIVITIESOhmm0.2200010”20”35”60”LOGOhmm01FIXEDDEPTHRESISTIVITIESOhmm0.22000ARRAYINDUCTION0.22000MWD400kHzShortSpaced2MHzLongSpaced2MHzShortSpaced90”60”30”20”10”400KHzLongSpaced©2010BakerHughesIncorporated.AllRightsReserved.11第一趟钻第七趟钻第六趟钻第七趟钻随钻测井的时间推移响应电阻率侵入剖面—1天后电阻率:10↓8欧姆米含油饱和度:52%↓47%--5%第六趟钻第七趟钻电阻率侵入剖面—10天后电阻率:20↓13欧姆米含油饱和度:73%↓66%--7%第一趟钻第七趟钻©2010BakerHughesIncorporated.AllRightsReserved.12OnTrakRawData+AdvancedProcessing=EnhancedReservesLithoTrakPorosityAdvancedProcessedOnTrakResistivityOnTrakGammaRayWaterSaturation©2010BakerHughesIncorporated.AllRightsReserved.13自然伽玛–方位成像©2009BakerHughesIncorporated.AllRightsReserved.SectoredGammaRayImageGammaRay©2010BakerHughesIncorporated.AllRightsReserved.14准确的ECD随钻评价可早期识别钻井风险,进行实时决策实时决策-ECD–井眼清洁©2009BakerHughesIncorporated.AllRightsReserved.©2010BakerHughesIncorporated.AllRightsReserved.15AziTrak–随钻方位电阻率测井©2010BakerHughesIncorporated.AllRightsReserved.16地质导向中的挑战在河道砂体中导向多传播电阻率2MHz相位差多传播电阻率400kHz衰减方位传播电阻率泥岩/煤层/粉砂岩Rt=1-3ohmm河道砂体油层Rt=30ohmm©2010BakerHughesIncorporated.AllRightsReserved.17多传播电阻率工具响应模型但怎么知道边界在哪个方位?曲线分离表明工具正接近地层边界泥岩泥岩模拟OnTrak仪器响应©2010BakerHughesIncorporated.AllRightsReserved.18泥岩钻进方向的确定BottomTopTop泥岩层从上方靠近井眼泥岩层从下方靠近井眼泥岩©2010BakerHughesIncorporated.AllRightsReserved.19AziTrak™-层界面探测在OnTrak工具的基础上增加2个垂直于工具的接收线圈,则当工具旋转时可测量井周环境的方位信息AchievementsAtotalof395mof8½sectionwith258mnetpaywasdrilledsincelandingpointProposedGOC@-1250mSSLP@1905mMDGasCapdisappeared?ChannelSandOneChannelSandTwoShaleBreak实例:边际油藏水平井开发双边界例子,上下均为泥岩©2010BakerHughesIncorporated.AllRightsReserved.21LithoTrak–随钻中子密度孔隙度测井LithoTrak™--随钻中子密度孔隙度测井•井眼定位–增强油藏地质导向–加快数据采集速率–由高分辨率密度成像实时进行地层倾角拾取•油藏特征–准确、实时密度和中子测量–可靠的获取数据–降低井眼校正•消除钻井风险–高ECD环境下的安全性–改善井眼整体性评价–方位井径成像After30minutesdrilling©2010BakerHughesIncorporated.AllRightsReserved.23随钻测井与电缆测井的测量环境对比电缆测井随钻测井电缆测井需要校正泥饼随钻测井需要校正泥浆泥岩砂岩地层泥饼放射源短源距探测器长源距探测器泥浆©2010BakerHughesIncorporated.AllRightsReserved.24随钻测井与电缆测井的孔隙度对比LWDLWDLWDLWD准确的放射性测量值©2010BakerHughesIncorporated.AllRightsReserved.26自然伽玛和密度成像的应用实例©2010BakerHughesIncorporated.AllRightsReserved.27方位井径©2010BakerHughesIncorporated.AllRightsReserved.28方位井径-ATK井眼质量优©2010BakerHughesIncorporated.AllRightsReserved.29方位井径-MoTor井壁垮塌及螺旋形井眼©2010BakerHughesIncorporated.AllRightsReserved.30StarTrak–随钻高分辨率电阻率成像测井©2010BakerHughesIncorporated.AllRightsReserved.31StarTrak测量电极©2010BakerHughesIncorporated.AllRightsReserved.32分辨率从3“直到0.25Lindsayetal.,2006,SPWLA高分辨率可有效降低不确定性©2010BakerHughesIncorporated.AllRightsReserved.33图像对比伽玛成像密度成像电阻率成像层界面薄层裂缝胶结层段©2010BakerHughesIncorporated.AllRightsReserved.34实时分辨率©2010BakerHughesIncorporated.AllRightsReserved.35裂缝、断层和孔洞2英尺©2010BakerHughesIncorporated.AllRightsReserved.36交错层理©2010BakerHughesIncorporated.AllRightsReserved.37滑动©2010BakerHughesIncorporated.AllRightsReserved.38电阻率曲线上没有变化自然伽玛©2010BakerHughesIncorporated.AllRightsReserved.39地质力学研究Geomechanicalstudy,UKSPE105808ElectricalImageStaticNormalizedElectricalImageDynamicNormalized©2010BakerHughesIncorporated.AllRightsReserved.40SoundTrak–随钻声波测井©2010BakerHughesIncorporated.AllRightsReserved.41声波激发模式单极子偶极子四极子©2010BakerHughesIncorporated.AllRightsReserved.42单极子的局限性•慢地层•快地层横波纵波斯通利波纵波斯通利波1000usec3000usec纵波和快横波声波传播途径-单极子Wireline电缆测井LWD随钻测井+井口模式+斯通利波进/出慢横波-需要很大的频散校正声波传播途径-偶极子SlowFormation(Vs=1000m/s)+-慢横波声波传播途径-四极子++--SlowFormation(Vs=1000m/s)©2010BakerHughesInc
本文标题:LWD随钻测井技术最新进展
链接地址:https://www.777doc.com/doc-5687434 .html