您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 蛋白质分离技术(全)
第十节蛋白质的分离与纯化一、引言二、蛋白质(酶)分离纯化的前处理三、蛋白质(酶)分离与纯化四、层析技术五、电泳技术六、离心技术一、引言•蛋白质(酶)存在于一切生物体中,是非常重要的生物大分子。蛋白质是生物功能的执行者,担负着生物催化、物质运输、运动、防御、调控及记忆、识别等多种生理功能。(一)分离纯化的意义①从生物材料中分离制备蛋白质、核酸,研究其结构与功能,对于了解生命活动的规律,阐明生命现象的本质有重大意义。②工业生产的需要:食品、发酵、纺织、制革等工业,需要大量的高活性的酶制剂。如用淀粉酶制造葡萄糖、麦芽糖、糊精以及糖浆等。③医疗的需要:如用猪胰岛素治疗糖尿病。④基因工程的需要(二)分离纯化的要求1、纯度:主要取决于研究的目的和应用上的要求。如作为研究一级结构、空间结构,一级结构与功能的关系的蛋白质制剂、工具酶和标准蛋白、酶法分析的酶制剂,都要求均一;工业、医药方面应用的酶和蛋白质制剂,达到一定纯度即可,不要求均一。2、活性:要求大分子保持天然构象状态,有高度的生物活性。3、收率:希望收率越高越好,但在分离纯化过程中总有不少损失。而且提纯步骤越多,损失越大。(三)分离纯化的一般程序生物大分子的分离纯化一般可分为以下几个阶段:①材料的选择和预处理②破碎细胞及提取(有时还需要进行细胞器的分离)③分离纯化:包括粗分级分离和细分级分离其中前两个阶段为生物大分子分离纯化的前处理。选择材料破碎细胞提取分离纯化分析及鉴定二、蛋白质(酶)分离纯化的前处理(一)材料的选择与预处理•选择材料主要根据实验目的而定。工业生产上注意选择含量高、来源丰富、易获得、制备工艺简单、成本低的动植物组织或微生物做原料。科研选材则无需考虑上述问题,只要能达到实验目的即可。•实验材料选定后,常常需要进行预处理,如动物材料需要除去一些与实验无关的结缔组织、脂肪组织;植物种子需要除壳;微生物需要将菌体与发酵液分开。另外,必须尽可能保持材料的新鲜,尽快加工处理。若不立即进行实验或加工,应冷冻保存。(二)细胞的破碎•分离提取某一生物大分子,首先要求生物大分子从原来的组织或细胞中以溶解的状态释放出来,并保持原来的天然状态,不丢生物活性。因此应选择适当的方法将组织和细胞破碎。但若材料是体液(如血)或生物体分泌到体外的分泌物,则不必进行组织细胞的破碎。•组织细胞的破碎方法很多,不同的实验规模,不同的实验材料和实验要求,使用的破碎方法和条件也不同。•1.机械法:•1)研磨:将剪碎的动物组织置于研钵或匀浆器中,加入少量石英砂研磨或匀浆。•2)组织捣碎器:这是一种较剧烈的破碎细胞的方法,通常可先用家用食品加工机将组织打碎,然后再用10000r/min~20000r/min的内刀式组织捣碎机(即高速分散器)将组织的细胞打碎。2.物理法:•1)反复冻融法:将待破碎的细胞冷至-15℃到-20℃,然后放于室温(或40℃)迅速融化,如此反复冻融多次,由于细胞内形成冰粒使剩余胞液的盐浓度增高而引起细胞溶胀破碎。•2)超声波处理法:此法是借助超声波的振动力破碎细胞壁和细胞器。破碎微生物细菌和酵母菌时,时间要长一些。•3)压榨法:这是一种温和的、彻底破碎细胞的方法。在1000×105Pa~2000×105Pa的高压下使细胞悬液通过一个小孔突然释放至常压,细胞将彻底破碎。•4)冷热交替法:从细菌或病毒中提取蛋白质和核酸时可用此法。在90℃左右维持数分钟,立即放入冰浴中使之冷却,如此反复多次,绝大部分细胞可以被破碎。3.化学与生物化学方法:•1)自溶法:将新鲜的生物材料存放于一定的pH和适当的温度下,细胞结构在自身所具有的各种水解酶(如蛋白酶和酯酶等)的作用下发生溶解,使细胞内含物释放出来。•2)溶胀法:细胞膜为天然的半透膜,在低渗溶液和低浓度的稀盐溶液中,由于存在渗透压差,溶剂分子大量进入细胞,将细胞膜胀破释放出细胞内含物。•3)酶解法:利用各种水解酶,如溶菌酶、纤维素酶、蜗牛酶和酯酶等,于37℃,pH8,处理15分钟,可以专一性地将细胞壁分解。•4)有机溶剂处理法:利用氯仿、甲苯、丙酮等脂溶性溶剂或SDS(十二烷基硫酸钠)等表面活性剂处理细胞,可将细胞膜溶解,从而使细胞破裂,此法也可以与研磨法联合使用。(三)细胞器的分离•细胞器包括细胞核、线粒体、核糖体、内质网,植物细胞还有叶绿体。•如果要分离制备分布在这些细胞器中的生物大分子,为了防止其他细胞组分中的物质对制备物的干扰或污染,还需先将细胞器分离出来,然后在某一细胞器中分离某一物质。•细胞器的分离一般采用差速离心法,即将破碎后的细胞在适当的介质中进行离心,常用的介质有蔗糖、甘露醇、柠檬酸、聚乙二醇等。各种细胞组分按质量大小的不同,经过不同速度的离心后,沉降于离心管的不同部位,经多次分步离心后,即可获得所需组分。(四)提取•组织细胞破碎过程中,大量的胞内酶及细胞内含物被释放出来,必须立即将其置于一定条件下和溶剂中,让制备物充分溶解,并尽可能保持原来的天然状态,避免因长久放置造成制备物的分解破坏,这就是提取。1.影响提取的因素•目的产物在提取的溶剂中溶解度的大小;•由固相扩散到液相的难易;•溶剂的pH值和提取时间等。通常:极性物质易溶于极性溶剂,非极性物质易溶于非极性溶剂;碱性物质易溶于酸性溶剂,酸性物质易溶于碱性溶剂;•温度升高,溶解度加大;•远离等电点的pH值,溶解度增加。提取时所选择的条件应有利于目的产物溶解度的增加和保持其生物活性。2.水溶液提取•蛋白质和酶的提取一般以水溶液为主。用水溶液提取生物大分子应注意的几个主要影响因素是:•1)盐浓度(即离子强度):•离子强度对生物大分子的溶解度有极大的影响,绝大多数蛋白质和酶,在低离子强度的溶液中都有较大的溶解度,如在纯水中加入少量中性盐,蛋白质的溶解度比在纯水时大大增加,称为“盐溶”现象。盐溶现象的产生主要是少量离子的活动,减少了偶极分子之间极性基团的静电吸引力,增加了溶质和溶剂分子间相互作用力的结果。•为了提高提取效率,有时需要降低或提高溶剂的极性。向水溶液中加入蔗糖或甘油可使其极性降低,增加离子强度(如加入KCl、NaCl、NH4Cl或(NH4)2SO4)可以增加溶液的极性。•2)pH值:蛋白质、酶的溶解度和稳定性与pH值有关。过酸、过碱均应尽量避免,一般控制在pH=6~8范围内,提取溶剂的pH应在蛋白质和酶的稳定范围内,通常选择偏离等电点的两侧。•3)温度:为防止变性和降解,制备具有活性的蛋白质和酶,提取时一般在0℃~5℃的低温操作。•4)防止蛋白酶的降解作用:加入抑制剂或调节提取液的pH、离子强度或极性等方法使相应的水解酶失去活性,防止它们对欲提纯的蛋白质、酶的降解作用。•5)搅拌与氧化:搅拌能促使被提取物的溶解,一般采用温和搅拌为宜,速度太快容易产生大量泡沫,增大了与空气的接触面,会引起酶等物质的变性失活。因为一般蛋白质都含有相当数量的巯基,有些巯基常常是活性部位的必需基团,若提取液中有氧化剂或与空气中的氧气接触过多都会使巯基氧化为分子内或分子间的二硫键,导致酶活性的丧失。在提取液中加入少量巯基乙醇或二硫苏糖醇以防止巯基氧化。3.有机溶剂提取•一些和脂类结合比较牢固或分子中非极性侧链较多的蛋白质和酶难溶于水、稀盐、稀酸、或稀碱中,常用不同比例的有机溶剂提取。•常用的有机溶剂有乙醇、丙酮、异丙醇、正丁酮等,这些溶剂可以与水互溶或部分互溶,同时具有亲水性和亲脂性。•有些蛋白质和酶既溶于稀酸、稀碱,又能溶于含有一定比例的有机溶剂的水溶液中,在这种情况下,采用稀的有机溶液提取常常可以防止水解酶的破坏,并兼有除去杂质提高纯化效果的作用。例如,胰岛素。4.膜蛋白的提取•膜蛋白的种类繁多,多数膜蛋白分子数目较少,但却赋予细胞膜非常重要的生物学功能。•根据膜蛋白分离的难易及其与脂分子的结合方式,膜蛋白可分为两大类型:外周膜蛋白和内在膜蛋白。(1)外周膜蛋白为水溶性蛋白,靠离子键或其它较弱的键与膜表面的蛋白质分子或脂分子结合,因此只要改变溶液的离子强度甚至提高温度就可以从膜上分离下来,膜结构并不被破坏。(2)内在膜蛋白与膜结合非常紧密,一般讲只有用去垢剂(detergent)使膜溶解后才可分离出来。•膜蛋白即内在蛋白溶解性不好,提取膜蛋白的基本方法就是用不同的离心速度去掉胞质蛋白等,最后用去污剂把蛋白从膜中释放出来。•膜蛋白分离纯化的重要步骤是选择适当的增溶用表面活性剂,一般常用的有胆酸盐,Triton-100,Tween-80,SDS等表面活性剂。分离膜蛋白的方法(原则性)•1)先分离膜,然后提取;如选用冷热交替法、反复冻融法、超声破碎法、玻璃匀浆法、自溶法和酶处理法使得细胞破碎,然后通过剃度离心得到含有膜蛋白的粗组分。•2)用特殊的去污剂选择性的分离。在多数情况下,都是采用去垢剂将疏水蛋白从其膜结构中溶解下来。三、分离与纯化•从细胞中提取得到的生物大分子往往是不纯净的,含有大量杂质,必须进一步分离纯化,这一阶段可分为粗分级分离和细分级分离两步进行。•蛋白质分离纯化的方法很多,主要是根据蛋白分子之间特异性的差异,如分子大小,溶解度,电荷等建立起来的。常用的蛋白质分离纯化技术溶解度盐析、等电点沉淀、有机溶剂沉淀分子大小透析、超过滤密度梯度离心、凝胶过滤带电特性电泳、离子交换层析吸附特性吸附层析对配体分子的亲和性依据性质方法用于粗分用于细分亲和层析、金属螯合层析分配层析(一)粗分级分离主要是利用盐析法、等电点沉淀、有机溶剂沉淀等方法,使目的蛋白与其它较大量的杂蛋白分开。优点:简便、处理量大、既能除去大量杂质,又能浓缩蛋白质。缺点:分辨率低,产品杂质多。1.盐析(中性盐沉淀)•在溶液中加入中性盐使生物大分子沉淀析出的过程称为“盐析”。除了蛋白质和酶以外,多肽、多糖和核酸等都可以用盐析法进行沉淀分离。•盐析法应用最广的还是在蛋白质领域,已有八十多年的历史,其突出的优点是:•①成本低,不需要特别昂贵的设备。•②操作简单、安全。•③对许多生物活性物质具有稳定作用。⑴盐析的基本原理•蛋白质溶液为亲水溶胶体系,其稳定因素:水化膜和电荷。•中性盐的亲水性大于蛋白质分子的亲水性。•加入大量中性盐后,夺走了水分子,破坏了水化膜,暴露出疏水区域,同时又中和了电荷,破坏了亲水溶胶,蛋白质分子即聚集而形成沉淀。溶解度盐浓度Salting-outSalting-in++++++++++++++++等点电时的蛋白质(亲水胶体)带负电荷蛋白质(亲水胶体)脱水脱水脱水带负电荷蛋白质(疏水胶体)不稳定蛋白颗粒阴离子阳离子碱酸酸蛋白质聚集沉淀带正电荷蛋白质(亲水胶体)碱++水化膜带正电荷蛋白质(疏水胶体)水化膜⑵中性盐的选择•常用的中性盐中最重要的是(NH4)2SO4,因为它与其他常用盐类相比有十分突出的优点:•1)溶解度大:尤其是在低温时仍有相当高的溶解度,这是其他盐类所不具备的。由于酶和各种蛋白质通常是在低温下稳定,因而盐析操作也要求在低温下(0~4℃)进行。由下表可以看到,硫铵在0℃时的溶解度,远远高于其它盐类:几种盐在不同温度下的溶解度(克/100毫升水)•0℃20℃80℃100℃(NH4)2SO470.675.495.3103Na2SO44.918.943.342.2NaH2PO41.67.893.8101•硫铵在0℃时的溶解度,远远高于其它盐类•2)分离效果好:有的提取液加入适量硫酸铵盐析,一步就可以除去75%的杂蛋白,纯度提高了四倍。•3)不易引起变性,有稳定酶与蛋白质结构的作用。有的酶或蛋白质用2~3mol/L浓度的(NH4)2SO4保存可达数年之久。•4)价格便宜,废液不污染环境。(3)分段盐析•不同的蛋白质分子,由于其分子表面的极性基团的种类、数目以及排布的不同,其水化层厚度不同,故盐析所需要的盐浓度也不一样,因此调节蛋白质溶液中的盐浓度,可以使不同的蛋白质分别沉淀。血清球蛋白清蛋白(NH4)2SO450%饱和度饱和析出析出饱和度:在给定条件下以可能达到的最大浓度的百分数表示的盐浓度。(4)盐析的影响因素•1)蛋白质的浓度:高浓度的蛋白质用稍低的硫酸铵饱和度沉淀,若蛋白质浓度过高,易产生各种蛋
本文标题:蛋白质分离技术(全)
链接地址:https://www.777doc.com/doc-5692264 .html