您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 新人教版相似三角形的性质与判定典型题(完美的解答分析过程)
一.选择题(共14小题)1.(2011•义乌市)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG;一定正确的结论有()A.1个B.2个C.3个D.4个2.(2011•遵义)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为()A.5B.6C.7D.123.(2011•乌鲁木齐)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为()A.B.C.D.14.(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2B.1:3C.2:3D.2:55.(2011•潼南县)如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①②B.②③C.②④D.③④6.(2011•铜仁地区)已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A.B.C.D.7.(2011•台湾)如图为一△ABC,其中D、E两点分别在AB、AC上,且AD=31,DB=29,AE=30,EC=32.若∠A=50°,则图中∠1、∠2、∠3、∠4的大小关系,下列何者正确?()A.∠1>∠3B.∠2=∠4C.∠1>∠4D.∠2=∠38.(2011•台湾)如图为梯形纸片ABCD,E点在BC上,且∠AEC=∠C=∠D=90°,AD=3,BC=9,CD=8.若以AE为折线,将C折至BE上,使得CD与AB交于F点,则BF长度为何()A.4.5B.5C.5.5D.69.(2011•遂宁)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,下列说法中正确的个数是()①AC•BC=AB•CD②AC2=AD•DB③BC2=BD•BA④CD2=AD•DB.A.1个B.2个C.3个D.4个10.(2011•锦州)如图,四边形ABCD,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为()A.3B.4C.5D.611.(2011•河北)如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.2C.3D.412.(2011•大连)如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF等于()A.B.1C.D.213.(2011•北京)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()A.B.C.D.14.(2010•湘西州)如图,△ABC中,DE∥BC,=,DE=2cm,则BC=()A.6cmB.4cmC.8cmD.7cm二.填空题(共12小题)15.(2011•牡丹江)在△ABC中,AB=6,AC=9,点D在边AB所在的直线上,且AD=2,过点D作DE∥BC交边AC所在直线于点E,则CE的长为_________.16.(2010•梧州)如图,在平行四边形ABCD中,E是对角线BD上的点,且EF∥AB,DE:EB=2:3,EF=4,则CD的长为_________.17.(2009•烟台)如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠C;②DE=CF;③△ADE∽△FDB;④∠BFD=∠CAF其中正确的结论是_________.18.(2009•黄石)在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE=_________.19.(2008•衢州)如图,点D、E分别在△ABC的边上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,则AE的长为_________.20.(2008•南宁)如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=_________.21.(2007•厦门)如图,在平行四边形ABCD中,AF交DC于E,交BC的延长线于F,∠DAE=20°,∠AED=90°,则∠B=_________度;若=,AD=4厘米,则CF=_________厘米.22.(2007•乌鲁木齐)如图,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=_________.23.(2006•绵阳)如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为_________.24.(2006•鄂州)如图,D为△ABC边AB上一点,要使AC2=AD•AB成立则需添加一个条件,这个条件可以是_________.25.(2006•长春)图中x=_________.26.(2004•芜湖)如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_________cm.三.解答题(共4小题)27.(2011•佛山)如图,D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.28.(2011•眉山)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.29.(2011•济南)如图,点C为线段AB上任意一点(不与A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.(1)求证:△ACE≌△DCB;(2)请你判断△AMC与△DMP的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.30.(2011•岳阳)如图1,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图2,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2(2)操作:如图3,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG=_________.请予证明.答案与评分标准一.选择题(共14小题)1.(2011•义乌市)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG;一定正确的结论有(D)A.1个B.2个C.3个D.4个考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质。分析:①利用SAS证明△BAD≌△CAE,可得到CE=BD,②利用平行四边形的性质可得AE=CD,再结合△ADE是等腰直角三角形可得到△ADC是等腰直角三角形;③利用SAS证明△BAE≌△BAD可得到∠ADB=∠AEB;④利用得出∠GFD=∠AFE,以及∠GDF+GFD=90°,进而得出△CGD∽△EAF,得出比例式.解答:解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即:∠BAD=∠CAE,∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AE=AD,∴△BAD≌△CAE(SAS),∴CE=BD,∴故①正确;②∵四边形ACDE是平行四边形,∴∠EAD=∠ADC=90°,AE=CD,∵△ADE都是等腰直角三角形,∴AE=AD,∴AD=CD,∴△ADC是等腰直角三角形,∴②正确;③∵△ADC是等腰直角三角形,∴∠CAD=45°,∴∠BAD=90°+45°=135°,∵∠EAD=∠BAC=90°,∠CAD=45°,∴∠BAE=360°﹣90°﹣90°﹣45°=135°,又AB=AB,AD=AE,∴△BAE≌△BAD(SAS),∴∠ADB=∠AEB;故③正确;④∵△BAD≌△CAE,△BAE≌△BAD,∴△CAE≌△BAE,∴∠BEA=∠AEC=∠BDA,∵∠AEF+∠AFE=90°,∴∠AFE+∠BEA=90°,∵∠GFD=∠AFE,∴∠GDF+GFD=90°,∴∠CGD=90°,∵∠FAE=90°,∠GCD=∠AEF,∴△CGD∽△EAF,∴,∴CD•AE=EF•CG.故④正确,故正确的有4个.故选D.点评:此题主要考查了全等三角形的判定及性质,以及相似三角形的判定,注意细心分析,熟练应用全等三角形的判定以及相似三角形的判定是解决问题的关键.2.(2011•遵义)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为()A.5B.6C.7D.12考点:相似三角形的判定与性质;正方形的性质。分析:根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.解答:解:∵在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,∴x=0(不符合题意,舍去),x=7.故选C.点评:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边.3.(2011•乌鲁木齐)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为()A.B.C.D.1考点:相似三角形的判定与性质;等边三角形的性质。分析:根据两角对应相等的两个三角形相似,即可证得ABP∽△PCD,然后根据相似三角形的对应边的比相等即可求得CD的长.解答:解:∵∠APC=∠ABP+∠BAP=60+∠BAP=∠APD+∠CPD=60+∠CPD,∴∠BAP=∠CPD.又∵∠ABP=∠PCD=60,∴ABP∽△PCD.∴=,即=.∴CD=.故选B.点评:本题主要考查了相似三角形的相似的判定以及应用,正确证得两个三角形相似是解题的关键.4.(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2B.1:3C.2:3D.2:5考点:相似三角形的判定与性质;平行四边形的性质。分析:根据四边形ABCD是平行四边,求证△AEF∽△BCF,然后利用其对应边成比例即可求得答案.解答:解:∵四边形ABCD是平行四边,∴△AEF∽△BCF,∴=,∵点E为AD的中点,∴==,故选A.点评:此题主要考查学生对相似三角形的判定与性质,平行四边形的性质等知识点,难度不大,属于基础题.5.(2011•潼南县)如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①②B.②③C.②④D.③④考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质。分析:①根据平行四边形的对边相等的性质即可
本文标题:新人教版相似三角形的性质与判定典型题(完美的解答分析过程)
链接地址:https://www.777doc.com/doc-5704581 .html