您好,欢迎访问三七文档
-1-校本课程数学计算方法目录第一讲生活中几十乘以几十巧算方法..............................-2-第二讲常用巧算速算中的思维与方法(1)....................-4-第三讲常用巧算速算中的思维与方法(2)....................-5-第四讲常用巧算速算中的思维与方法(3)....................-8-第五讲常用巧算速算中的思维与方法(4)...................-10-第六讲常用巧算速算中的思维与方法(5)...................-13-第七讲常用巧算速算中的思维与方法(6)...................-15-第八讲小数的速算与巧算.................................................-17-第九讲乘法速算1..............................................................-18-第十讲乘法速算2..............................................................-20-第十一讲乘法速算3..............................................................-22-第十二讲乘法速算4..............................................................-23-第十三讲乘法速算5..............................................................-23-第十四讲乘法速算6..............................................................-25-第十五讲乘法速算7..............................................................-27-第十六讲乘法速算8..............................................................-29-注:《速算技巧》...............................................................-32--2-第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=?解:1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。4.几十一乘几十一:-3-口诀:头乘头,头加头,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。-4-第二讲常用巧算速算中的思维与方法(1)【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为1+2+……+99+100所以,1+2+3+4+……+99+100=101×100÷2=5050“3+5+7+………+97+99=?3+5+7+……+97+99=(99+3)×49÷2=2499。这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。张丘建利用这一思路巧妙地解答了“有女不善织”这一名题:“今有女子不善织,日减功,迟。初日织五尺,末日织一尺,今三十日织讫。问织几何?”题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。她第一天织了5尺布,最后一天织了1尺,一共织了30天。问她一共织了多少布?张丘建在《算经》上给出的解法是:“并初末日织尺数,半之,余以乘织讫日数,即得。”“答曰:二匹一丈”。这一解法,用现代的算式表达,就是1匹=4丈,1丈=10尺,-5-90尺=9丈=2匹1丈。张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30天所织的布都加起来,算式就是:5+…………+1在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。若把这个式子反过来,则算式便是:1+………………+5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。同样,这一递增的相同的数,也不是一个整数。假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等”这一特点,那么,就会出现下面的式子:所以,加得的结果是6×30=180(尺)但这妇女用30天织的布没有180尺,而只有180尺布的一半。所以,这妇女30天织的布是180÷2=90(尺)可见,这种解法的确是简单、巧妙和饶有趣味的。第三讲常用巧算速算中的思维与方法(2)方法一:分组计算一些看似很难计算的题目,采用“分组计算”的方法,往往可以使它很快地解答出来。例如:求1到10亿这10亿个自然数的数字之和。这道题是求“10亿个自然数的数字之和”,而不是“10亿个自然数之和”。什么是“数字之和”?例如,求1到12这12个自然数的数字之和,算式是-6-1+2+3+4+5+6+7+8+9+1+0+1+1+1+2=5l。显然,10亿个自然数的数字之和,如果一个一个地相加,那是极麻烦,也极费时间(很多年都难于算出结果)的。怎么办呢?我们不妨在这10亿个自然数的前面添上一个“0”,改变数字的个数,但不会改变计算的结果。然后,将它们分组:0和999,999,999;1和999,999,998;2和999,999,997;3和999,999,996;4和999,999,995;5和999,999,994;………………依次类推,可知除最后一个数,1,000,000,000以外,其他的自然数与添上的0共10亿个数,共可以分为5亿组,各组数字之和都是81,如0+9+9+9+9+9+9+9+9+9=811+9+9+9+9+9+9+9+9+8=812+9+9+9+9+9+9+9+9+7=81………………最后的一个数1,000,000,000不成对,它的数字之和是1。所以,此题的计算结果是(81×500,000,000)+1=40,500,000,000+1=40,500,000,001方法二:由小推大计算复杂时,我们可以从数目较小的特殊情况入手,研究题目特点,找出一般规律,再推出题目的结果。例如:(1)计算下面方阵中所有的数的和。这是个“100×100”的大方阵,数目很多,关系较为复杂。不妨先化大为小,再由小推大。先观察“5×5”的方阵,如下图(图4.1)所示。-7-容易看到,对角线上五个“5”之和为25。这时,如果将对角线下面的部分(右下部分)用剪刀剪开,如图4.2那样拼接,那么将会发现,这五个斜行,每行数之和都是25。所以,“5×5”方阵的所有数之和为25×5=125,即53=125。于是,很容易推出大的数阵“100×100”的方阵所有数之和为1003=1,000,000。(2)把自然数中的偶数,像图4.3那样排成五列。最左边的叫第一列,按从左到右的顺序,其他叫第二、第三……第五列。那么2002出现在哪一列:列数一二三四五246816141210182022243230282634363840………………图4.3因为从2到2002,共有偶数2002÷2=1001(个)。从前到后,是每8个偶数为一组,每组都是前四个偶数分别在第二、三、四、五列,后四个偶数分别在第四、三、二、一列(偶数都是按由小到大的顺序)。所以,由1001÷8=125…………1,可知这1001个偶数可以分为125组,还余1个。故2002应排在第二列。方法三:凑整巧算用“凑整方法”巧算,常常能使计算变得比较简便、快速。例如(1)99.9+11.1=(90+10)+(9+1)+(0.9+0.1)=111-8-(2)9+97+998+6=(9+1)+(97+3)+(998+2)=10+100+1000=1110(3)125+125+125+125+120+125+125+125=155+125+125+125+(120+5)+125+125+125-5=125×8-5=1000-5=995第四讲常用巧算速算中的思维与方法(3)方法一:巧妙试商除数是两位数的除法,可以采用一些巧妙试商方法,提高计算速度。(1)用“商五法”试商。当除数(两位数)的10倍的一半,与被除数相等(或相近)时,可以直接试商“5”。如70÷14=5,125÷25=5。当除数一次不能除尽被除数的时候,有些可以用“无除半商五”。“无除”指被除数前两位不够除,“半商五”指若被除数的前两位恰好等于(或接近)除数的一半时,则可直接商“5”。例如1248÷24=52,2385÷45=53(2)同头无除商八、九。“同头”指被除数和除数最高位上的数字相同。“无除”仍指被除数前两位不够除。这时,商定在被除数高位数起的第三位上面,再直接商8或商9。5742÷58=99,4176÷48=87。(3)用“商九法”试商。当被除数的前两位数字临时组成的数小于除数,且前三位数字临时组成的数与除数之和,大于或等于除数的10倍时,可以一次定商为“9”。一般地说,假如被除数为m,除数为n,只有当9n≤m<10n时,n除m的商才是9。同样地,10n≤m+n<11n。这就是我们上述做法的根据。-9-例如4508÷49=92,6480÷72=90。(4)用差数试商。当除数是11、12、13…………18和19,被除数前两位又不够除的时候,可以用“差数试商法”,即根据被除数前两位临时组成的数与除数的差来试商的方法。若差数是1或2,则初商为9;差数是3或4,则初商为8;差数是5或6,则初商为7;差数是7或8,则初商是6;差数是9时,则初商为5。若不准确,只要调小1就行了。例如1476÷18=82(18与14差4,初商为8,经试除,商8正确);1278÷17=75(17与12的差为5,初商为7,经试除,商7正确)。为了便于记忆,我们可将它编成下面的口诀:差一差二商个九,差三差四八当头;差五差六初商七,差七差八先商六;差数是九五上阵,试商快速无忧愁。方法二:恒等变形恒等变形是一种重要的思想和方法,也是一种重要的解题技巧。它利用我们学过的知识,去进行有目的的数学变形,常常能使题目很快地获得解答。例如(1)1832+68=(1832-32)+(68+32)=1800+100=1900(2)359.7-9.9=(359.7+0.1)-(9.9+O.1)=359.8-10=349.8-10-第五讲常用巧算速算中的思维与方法(4)方法一:拆数加减在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。(1)拆成两个分数相减。例如又如(2)拆成两个分数相加。例如-11-又如方法二:同分子分数加减同分子分数的加减法,有以下的计算规律:分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)
本文标题:巧算和速算方法
链接地址:https://www.777doc.com/doc-5711783 .html