您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 数学建模-统计与回归
统计与回归1、考察温度x对产量y的影响,测得下列10组数据:温度(℃)20253035404550556065产量(kg)13.215.116.417.117.918.719.621.222.524.3求:(1)y关于x的线性回归方程,检验回归效果是否显著;(2)并预测x=42℃时产量的估计值;(3)预测x=42℃时产量置信度为95%的预测区间(请参考本课件中多项式回归polyfit与polyconf,或非线性拟合命令nlinfit或nlpredci实现区间预测).Matlab程序:x=[20253035404550556065];X=[ones(10,1)x'];y=[13.215.116.417.117.918.719.621.222.524.3];[b,bint,r,rint,stats]=regress(y',X);b,statsrstool(x',y','linear')[p,S]=polyfit(x,y,1);[Y,DELTA]=polyconf(p,x,S);plot(x,y,'k+',x,Y,'r')[Y,DELTA]=polyconf(p,42,S)b=9.12120.2230stats=0.9821439.83110.00000.2333Y=18.4885DELTA=1.1681(1)y关于x的线性回归方程为y=9.1212+0.223x,2r=0.9821,p=0.00000.05,所以回归方程成立,回归效果显著。(2)预测x=42℃时产量为18.4885(kg).(3)预测x=42℃时产量置信度为95%的预测区间为(17.3204,19.6566)2.某人记录了21天每天使用空调器的时间和使用烘干器的次数,并监视电表以计算出每天的耗电量,数据见下表,试研究耗电量(KWH,记作y)与空调器使用的小时数(AC,记作x1)和烘干器使用次数(DRYER,记作x2)之间的关系:(1)建立y与x1、x2之间的线性回归模型,并分析模型效果的显著性;(2)如有必要,考虑引入非线性项(平方项x12,x22以及交叉项x1*x2),建立新的回归模型;(3)分析模型中新引入的非线性项是否都是必要的,若不是,请去掉多余项,建立新的模型,并分析新模型的效果。序号1234567891011KWH3563661794799366948278AC1.54.55.02.08.56.013.58.012.57.56.5DRYER12203311123序号12131415161718192021kWH65777562854357336533AC8.07.58.07.512.06.02.55.07.56.0DRYER1221103010(1)x1=[1.54.55.02.08.56.013.58.012.57.56.58.07.58.07.512.06.02.55.07.56.0];x2=[122033111231221103010];y=[356366179479936694827865777562854357336533]';x=[ones(21,1)x1'x2'];[b,bint,r,rint,stats]=regress(y,x);rcoplot(r,rint)x(21,:)=[];y(21,:)=[];[b,bint,r,rint,stats]=regress(y,x);rcoplot(r,rint)[b,bint,r,rint,stats]=regress(y,x);b,bint,statsb=9.79665.416012.5843bint=4.952814.64044.89125.940910.899714.2690stats=0.9759343.87650.000012.0793y与x1、x2之间的线性回归模型为129.79665.41612.5843yxx,20.9759r,p=0.00000.05,回归方程成立,回归模型显著。(2)x1=[1.54.55.02.08.56.013.58.012.57.56.58.07.58.07.512.06.02.55.07.56.0];x2=[122033111231221103010];y=[356366179479936694827865777562854357336533]';x=[x1'x2'];rstool(x,y,'linear')Variableshavebeencreatedinthecurrentworkspace.beta,rmsebeta=8.10545.465913.2166rmse=3.9354故回归模型为:128.10545.465913.2166yxx,剩余标准差为3.9354rstool(x,y,'purequadratic')Variableshavebeencreatedinthecurrentworkspace.beta1,rmse1beta1=7.06895.117321.29840.0000-2.6562rmse1=3.1943故回归模型为:21227.06895.117321.29842.6562yxxx,剩余标准差为3.1943rstool(x,y,'interaction')Variableshavebeencreatedinthecurrentworkspace.beta2,rmse2beta2=8.70725.354712.65900.0984rmse2=4.0427故回归模型为:12128.70725.354712.65900.0984yxxxx,剩余标准差为4.0427rstool(x,y,'quadratic')Variableshavebeencreatedinthecurrentworkspace.beta3,rmse3beta3=9.47894.556319.91280.31360.0129-2.7739rmse3=3.2108故回归模型为:221211229.47894.556319.91280.31360.01292.7739yxxxxxx,剩余标准差为3.2108(3)x1=[1.54.55.02.08.56.013.58.012.57.56.58.07.58.07.512.06.02.55.07.56.0];x2=[122033111231221103010];y=[356366179479936694827865777562854357336533]';X=[ones(21,1)x1'x2'(x1.^2)'(x1.*x2)'(x2.^2)'];stepwise(X,y)x=[ones(21,1)x1'x2'(x2.^2)'];[b,bint,r,rint,stats]=regress(y,x);rcoplot(r,rint)x(17,:)=[];y(17,:)=[];[b,bint,r,rint,stats]=regress(y,x);rcoplot(r,rint)x(14,:)=[];y(14,:)=[];[b,bint,r,rint,stats]=regress(y,x);rcoplot(r,rint)b,bint,statsb=5.29135.091824.2141-3.4016bint=1.58798.99474.66695.516619.526828.9013-4.8329-1.9702stats=0.9892459.75630.00006.4484即^^^^01235.2913,5.0918,24.2141,3.4016;^0的置信区间为[1.5879,8.9947],^1的置信区间为[4.6669,5.5166],^2的置信区间为[19.5268,28.9013],^3的置信区间为[-4.8329,-1.9702]20.9892r,F=459.7563,p=0.0000P0.05,可知回归模型21225.29135.091824.21413.4016yxxx显著性较好
本文标题:数学建模-统计与回归
链接地址:https://www.777doc.com/doc-5720184 .html