您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2017高考试题分类汇编之解析几何和圆锥曲线文科(word-解析版)
-1-2017年高考试题分类汇编之解析几何(文)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017课表I文)已知F是双曲线:C1322yx的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是)3,1(,则APF的面积为().A13.B1 2.C2 3.D3 2【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.【点评】本题考查双曲线的简单几何性质,考查数形结合思想,属于基础题.2.(2017课标II文)若1a,则双曲线2221xya的离心率的取值范围是().A(2,).B(2,2).C(1,2).D(1,2)【分析】利用双曲线方程,求出a,c然后求解双曲线的离心率的范围即可.-2-【解答】解:a>1,则双曲线﹣y2=1的离心率为:==∈(1,).故选:C.【点评】本题考查双曲线的简单性质的应用,考查计算能力.3.(2017浙江)椭圆22194xy的离心率是().A133.B53.C23.D59【分析】直接利用椭圆的简单性质求解即可.【解答】解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.【点评】本题考查椭圆的简单性质的应用,考查计算能力.4.(2017课标II文)过抛物线2:4Cyx的焦点F,且斜率为3的直线交C于点M(M在x轴上方),l为C的准线,点N在l上且MNl,则M到直线NF的距离为().A5.B22.C23.D33【分析】利用已知条件求出M的坐标,求出N的坐标,利用点到直线的距离公式求解即可.【解答】解:抛物线C:y2=4x的焦点F(1,0),且斜率为的直线:y=(x﹣1),过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l可知:,解得M(3,2).可得N(﹣1,2),NF的方程为:y=﹣(x﹣1),即,则M到直线NF的距离为:=2.故选:C.【点评】本题考查直线与抛物线的位置关系的应用,考查计算能力.-3-5.(2017课标I文)设BA,是椭圆:C2213xym长轴的两个端点,若C上存在点M满足0120AMB,则m的取值范围是().A(0,1][9,).B(0,3][9,).C(0,1][4,).D(0,3][4,)【分析】分类讨论,由要使椭圆C上存在点M满足∠AMB=120°,∠AMB≥120°,∠AMO≥60°,当假设椭圆的焦点在x轴上,tan∠AMO=≥tan60°,当即可求得椭圆的焦点在y轴上时,m>3,tan∠AMO=≥tan60°=,即可求得m的取值范围.【解答】解:假设椭圆的焦点在x轴上,则0<m<3时,假设M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,∠AMB≥120°,∠AMO≥60°,tan∠AMO=≥tan60°=,解得:0<m≤1;当椭圆的焦点在y轴上时,m>3,假设M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,∠AMB≥120°,∠AMO≥60°,tan∠AMO=≥tan60°=,解得:m≥9,∴m的取值范围是(0,1]∪[9,+∞)故选A.-4-【点评】本题考查椭圆的标准方程,特殊角的三角函数值,考查分类讨论思想及数形结合思想的应用,考查计算能力,属于中档题.6.(2017课标III文)已知椭圆:C22221xyab)0(ba,的左、右顶点分别为21,AA,且以线段21AA为直径的圆与直线20bxayab相切,则C的离心率为().A63.B33.C23.D13【分析】以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,可得原点到直线的距离=a,化简即可得出.【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,∴原点到直线的距离=a,化为:a2=3b2.∴椭圆C的离心率e===.故选:A.【点评】本题考查了椭圆的标准方程及其性质、直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.-5-7.(2017天津文)已知双曲线22221(0,0)xyabab的左焦点为F,点A在双曲线的渐近线上,OAF是边长为2的等边三角形(O为原点),则双曲线的方程为().A221412xy.B221124xy.C2213xy.D2213yx【分析】利用三角形是正三角形,推出a,b关系,通过c=2,求解a,b,然后等到双曲线的方程.【解答】解:双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),可得c=2,,即,,解得a=1,b=,双曲线的焦点坐标在x轴,所得双曲线方程为:.故选:D.【点评】本题考查双曲线的简单性质的应用,考查计算能力.二、填空题(将正确的答案填在题中横线上)8.(2017天津文)设抛物线24yx的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若120FAC,则圆的方程为______________________.【分析】根据题意可得F(﹣1,0),∠FAO=30°,OA==1,由此求得OA的值,可得圆心C的坐标以及圆的半径,从而求得圆C方程.【解答】解:设抛物线y2=4x的焦点为F(1,0),准线l:x=﹣1,∵点C在l上,以C为圆心的圆与y轴的正半轴相切与点A,∵∠FAC=120°,∴∠FAO=30°,∴OA===1,∴OA=,∴A(0,),如图所示:∴C(﹣1,),圆的半径为CA=1,故要求的圆的标准方程为,故答案为:(x+1)2+=1.-6-【点评】本题主要考查求圆的标准方程的方法,抛物线的简单几何性质,属于中档题.9.(2017北京文)若双曲线221yxm的离心率为3,则实数m___________________.【分析】利用双曲线的离心率,列出方程求和求解m即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力.10.(2017山东文)在平面直角坐标系xOy中,双曲线22221(00)xyabab,的右支与焦点为F的抛物线22(0)xpyp交于BA,两点,若OFBFAF4,则该双曲线的渐近线方程为【分析】把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴yA+yB=,-7-∵|AF|+|BF|=4|OF|,∴yA+yB+2×=4×,∴=p,∴=.∴该双曲线的渐近线方程为:y=±x.故答案为:y=±x.【点评】本题考查了抛物线与双曲线的标准方程定义及其性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题..11.(2017课标III文)双曲线22219xya)0(a的一条渐近线方程为35yx,则a.【分析】利用双曲线方程,求出渐近线方程,求解a即可.【解答】解:双曲线(a>0)的一条渐近线方程为y=x,可得,解得a=5.故答案为:5.【点评】本题考查双曲线的简单性质的应用,考查计算能力.12.(2017江苏)在平面直角坐标系xOy中,双曲线2213xy的右准线与它的两条渐近线分别交于点P,Q其焦点是12,FF,则四边形12FPFQ的面积是.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=±x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.-8-13.(2017江苏)在平面直角坐标系xOy中,(12,0),(0,6),AB点P在圆2250Oxy:上,若20,PAPB≤则点P的横坐标的取值范围是.【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x﹣y+5=0以及直线上方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y0的关系式.三、解答题(应写出必要的文字说明、证明过程或演算步骤)14.(2017课标I文)设BA,为曲线4:2xyC上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且BMAM,求直线AB的方程.-9-【分析】(1)设A(x1,),B(x2,),运用直线的斜率公式,结合条件,即可得到所求;(2)设M(m,),求出y=的导数,可得切线的斜率,由两直线平行的条件:斜率相等,可得m,即有M的坐标,再由两直线垂直的条件:斜率之积为﹣1,可得x1,x2的关系式,再由直线AB:y=x+t与y=联立,运用韦达定理,即可得到t的方程,解得t的值,即可得到所求直线方程.【解答】解:(1)设A(x1,),B(x2,)为曲线C:y=上两点,则直线AB的斜率为k==(x1+x2)=×4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=,可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,再由y=的导数为y′=x,设M(m,),可得M处切线的斜率为m,由C在M处的切线与直线AB平行,可得m=1,解得m=2,即M(2,1),由AM⊥BM可得,kAM•kBM=﹣1,即为•=﹣1,化为x1x2+2(x1+x2)+20=0,即为﹣4t+8+20=0,解得t=7.则直线AB的方程为y=x+7.【点评】本题考查直线与抛物线的位置关系,注意联立直线方程和抛物线的方程,运用韦达定理,考查直线的斜率公式的运用,以及化简整理的运算能力,属于中档题.-10-15.(2017课标II文)设O为坐标原点,动点M在椭圆:C2212xy上,过M作x轴的垂线,垂足为N,点P满足NMNP2.(1)求点P的轨迹方程;(2)设点Q在直线3x上,且1PQOP.证明:过点P且垂直于OQ的直线l过C的左焦点F.【分析】(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),运用向量的坐标运算,结合M满足椭圆方程,化简整理可得P的轨迹方程;(2)设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),运用向量的数量积的坐标表示,可得m,即有Q的坐标,求得椭圆的左焦点坐标,求得OQ,PF的斜率,由两直线垂直的条件:向量数量积为0,即可得证.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2
本文标题:2017高考试题分类汇编之解析几何和圆锥曲线文科(word-解析版)
链接地址:https://www.777doc.com/doc-5735433 .html