您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 《线性代数》练习题(附答案)
1《线性代数与解析几何》练习题行列式部分一.填空题:1.若排列1274i56k9是偶排列,则3,8ki2.已知kjiaaaaa5413251是五阶行列式中的一项,且带正号,其中()ji则3,4,2kji3.设BA,是n阶可逆阵,且5A,则522,5)(63nTAAA,51kkBAB(k为常数)4.已知410132213D用ijA表示D的元素ija的代数余子式,则3732232221DAAA,032333231AAA,行列式3722333231232221131211DAAAAAAAAA5.设有四阶矩阵),(,),(4,3,24,3,2BA,其中4,3,2,,均为4维列向量,且已知行列式1,4BA,则行列式40|)||(|8BABA6.设xxxxxf321132213321)(则160)4(f7.设20112520842111111154115212111111541132111111323232xxxxxxxxx上述方程的解3,2,1x8.设A是n阶方阵,且A的行列式0aA,而*A是A的伴随矩阵,则*1naA9.若齐次线性方程组000321321321xxxxxxxxx只有零解,则应满足1条件。二.计算题:1.已知5阶行列式270513422111542131122254321求434241AAA和4544AA,其中ijA是元素ija的代数余子式。解:0)(227)(245444342414544434241AAAAAAAAAA1894544434241AAAAA2.计算行列式9173130211221111D。解:14140019001520111112440152031401111D28091400001900152011113.设A是n阶方阵,IAAT,且0A,求IA。3解:TTTIAAAIAAAAIA)()(IAA00IAA4.设A是n阶实对称矩阵,022AA,若)0()(nkkAr,求IA3。解:AA,是实对称矩阵相似于对角阵,20022和的特征值为由AAA.而r(A)=k,所以重的特征值是k2。对于矩阵A+3I,有一个1重的特征值k,以及一个3重的特征值kn,knIA335.计算),,2,1,(321321321321niaxxaaaaxaaaaxaaaaxDiinnnn解:nnnaxxaaxxaaxxaaaaxD0000001133112211321nnnnkkkkaxaxaxaaaaxaxax000000000)(3322322111nkkknkkkkaxaxaxax22111)()(矩阵部分一.填空题:41.设三阶方阵A,B满足BAABAA61,且714131000000A,则100020003)(611IAB。2.设nnnnnnbababababababababaA212221212111,其中),,3,2,1(0,0nibaii,则矩阵A的秩=1.3.设A是34的矩阵,且A的秩为2,而301020201B,则2)(ABr(2)()(,010ArABrBB可逆,)4.已知a=[1,2,3],b=[3121,,1],设A=baT,则131213233231211nnA(babbabaaAbaTnTTTnT13)()(3,)5.设矩阵100010001,300041003IA则逆矩阵1000001)2(21211IA6.设11334221tA,B为三阶非零矩阵,且AB=O,则3t)302)(1)(;3)()(0(tAArBrBrArAB又7.设四阶方阵A的秩为2,则其伴随矩阵*A的秩为0。58.设A,B均为n阶矩阵,3,2BA,则322121*nBA9.设A是三阶方阵,*A是A的伴随矩阵,21A,则1610)31(*1AA(161)2(|53|311AAA)。10.设A,C分别为r阶和s阶的可逆矩阵,则分块矩阵BCAX0的逆矩阵011111ACBACX11.设n阶方阵A满足方程0232IAA,则A的逆矩阵)3(211IAA(IIAA2)3()12.设101020101A,而2n为正整数,则021nnAA)22(12nnAAAA13.设A,B是n阶矩阵,且AB=A+B,则)(1IBIA(IIAIBIIBIBAIIBAAB))(()()()二.选择题:1.设n阶矩阵A,B,C满足关系式ABC=E,其中E是n阶单位矩阵,则必有(D)(A)ACB=E(B)CBA=E(C)BAC=E(D)BCA=E2.设A是n阶方阵)3(n,*A是A的伴随矩阵,又k为常数,且1,0k,则必有*)(kA=(B)*1**1*)()()()(AkDAkCAkBkAAnn3.设A是n阶可逆矩阵,*A是A的伴随矩阵,则有(A)1***1*)()()()(AADAACAABAAAnn4.设6101010001,100001010,,21133312321131131211232221333231232221131211PPaaaaaaaaaaaaBaaaaaaaaaA则必有(C)BPAPA21)(BAPPDBAPPCBPAPB122112)()()(5.设A,B均为n阶方阵,则必有(D)(A)BABA(B)BAAB(C)111)(BABA(D)BAAB6.设n维向量)21,0,,0,21(,矩阵TTIBIA2,,其中I为n阶单位矩阵,则AB(C)(A)0(B)–I(C)I(D)TI7.设A是n阶可逆矩阵)2(n,*A是A的伴随矩阵,则(C)(A)AAAn1*)*((B)AAAn1*)*((C)AAAn2*)*((D)AAAn2*)*(8.设)3(nn阶矩阵1111aaaaaaaaaaaaA,若矩阵A的秩为1n,则a必为(B)(A)1(B)n11(C)–1(D)11n9.设11,,,BABABA均为n阶可逆矩阵,则111)(BA等于(C)(A)11BA(B)BA(C)ABAB1)((D)1)(BA三.计算题:1.已知100110011A,求nA(n是自然数)7解:由归纳法,100102)1(1nnnnAn2.已知AP=PB,其中100000001B,112012001P求:A及5A。解:1140120011P1160020011PBPAAPBPPPBPBPA115515)(3.已知n阶方阵1000110011102222A求A中所有元素的代数余子式之和。解:可逆AA2100010000110001211A1)1()1(21221,1*nnAAAnjiij3.已知矩阵BA,满足:BAAB2,其中321011324A,求矩阵B。8解:AIABABAB1)2(29122692683B5.设矩阵BA,,满足,82*IBABAA其中100420221A*A是A的伴随矩阵,求矩阵B。解:200840642)(4)(44)(4)82(1111111*AIIAABIBAIABAIBAAIBAABAAA6.已知100110111A,且IABA2,其中I为三阶单位矩阵,求矩阵B。解:0000001201001102111001101111AAB7.设n阶方阵aaaaA111111111111,求)(Ar。解:100001000010111111)1(11)1(11)1(1111aaanaanaanaananaA故1a时,1)(Ar;na1时,r(A)=n-1;当a≠1且a≠1-n时,r(A)=n四.证明题:91.设A是n阶非零方阵,*A是A的伴随矩阵,TA是A的转置矩阵,当TAA*时,证明0A。证明:02*ijijijijijTaAaAAaAA另证(反证法):1)(0nArA若00)(1)()(****AAArArArAATT与题设矛盾。2.设A是n阶方阵,若0A,证明:0*A(其中*A是A的伴随矩阵)证明:3.设44)(ijaA,ijA为ija的代数余子式,且0,)4,3,2,1,(11ajiaAijij,求证:1A证明:10)1()()(424*AAAAIAAAAaAATTijji或1041214111AaAaAjjjjj4.用矩阵秩和向量组秩的关系证明})(),(min{)(BrArABr证明:设kmMA,,nkMB,)...(.....................)...(1121121222211121121kiinikiiikiiiknkknnkbAbAbAbbbbbbbbbAAAAB即AB的列皆由A的列线性表示,故),()(ArABr类似可证AB的行皆由B的行线行表示,所以)()(BrABr。5.设A为nm矩阵,B为kn矩阵,若0AB,证明nBrAr)()(证明:)0...00()...()...(2121kkABABABBBBAAB10所以0...0021kABABAB,即kBBB,...,,21为齐次线性方程组0Ax的解,因此可由0Ax的基础解系线性表示,所以rnBBBrk),...,,(21,即nBrAr)()(。6.设A是n阶方阵,*A是A的伴随矩阵,证明:秩01*)(nA1)(1)()(nARnARnAR证明:(1)AnAR)(可逆,而*1*,||AAAA从而可逆,nAR)(*(2)0||1)(AnAR,1)()()(0||***ARnARARIAAA又A至少有一个n-1阶子式不为零,1)(*AR,从而1)(*AR(3)AnAR1)(的所有n-1阶子式全为零。
本文标题:《线性代数》练习题(附答案)
链接地址:https://www.777doc.com/doc-5740887 .html