您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 中考数学概率与统计综合练习题及答案(1)
中考概率与统计综合练习题(一)1.据衢州市2011年国民经济和社会发展统计公报显示,2011年衢州市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符号购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2011年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果2012年新开工廉租房建设的套数比2011年增长10%,那么2012年新开工廉租房有多少套?2.我市某中学准备在校园内空地上种植桂花树、香樟树、木棉树和柳树,为了解学生喜爱的树种情况,随机调查了该校部分学生,并将调查结果整理后制成了如下统计图:请呢根据统计图提供的信息,解答以下问题(直接填写答案):(1)该中学一共随机调查了人;(2)条形统计图中的m=,m=;(3)如果在该校随机调查一位学生,那么该学生喜爱香樟树的概率是.3.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?。4.某超市销售多种颜色的运动服装,其中平均每天销售红、黄、蓝、白四种颜色运动服的数量如表,由此绘制的不完整的扇形统计图如图:四种颜色服装销量统计表服装颜色红黄蓝白合计数量(件)20n401.5nm所对扇形的圆心角α90°60°(1)求表中m、n、α的值,并将扇形统计图补充完整:表中m=,n=,α=;(2)为吸引更多的顾客,超市将上述扇形统计图制成一个可自由转动的转盘,并规定:顾客在本超市购买商品金额达到一定的数目,就获得一次转动转盘的机会.如果转盘停止后,指针指向红色服装区域、黄色服装区域,可分别获得60元、20元的购物券.求顾客每转动一次转盘获得购物券金额的平均数.5.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.6.某班数学科代表小华对本班上期期末考试数学成绩作了统计分析,绘制成如下频数、频率统计表和频数分布直方图,请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率统计表中,a=;b=;(2)请将频数分布直方图补充完整;(3)小华在班上任选一名同学,该同学成绩不低于80分的概率是多少?7.学校开展综合实践活动中,某班进行了小制作评比,作品上交时间为5月11日至5月30日,评委们把同学们上交作品的件数按5天一组分组统计,绘制了频数分布直方图如下,小长方形的高之比为:2:5:2:1.现已知第二组的上交作品件数是20件.求:(1)此班这次上交作品共件;(2)评委们一致认为第四组的作品质量都比较高,现从中随机抽取2件作品参加学校评比,小明的两件作品都在第四组中,他的两件作品都被抽中的概率是多少?(请写出解答过程)8.某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.9.为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为,喜欢“戏曲”活动项目的人数是人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.10.某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图10所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率。11.某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有▲人,女生有▲人;(2)扇形统计图中a=▲,b=▲;(3)补全条形统计图(不必写出计算过程);(4)若本校500名毕业生中随机抽取一名学生,这名学生该项测试成绩在8分以下的概率是多少?12.我市某中学为推进素质教育,在七年级设立了六个课外兴趣小组,下面是六个兴趣小组的频数分布直方图和扇形统计图,请根据图中提供的信息回答下列问题:(1)七年级共有人;(2)计算扇形统计图中“体育”兴趣小组所对应的扇形圆心角的度数;(3)求“从该年级中任选一名学生,是参加科技小组学生”的概率.13.近年来,地震、泥石流等自然灾害频繁发生,造成极大的生命和财产损失。为了更好地做好“防震减灾”工作,我市相关部门对某中学学生“防震减灾”的知晓率采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”、“比较了解”、“基本连接”和“不了解”四个等级。小明根据调查结果绘制了如下统计图,请根据提供的信息回答问题:(1)本次参与问卷调查的学生有人;扇形统计图中“基本连接”部分所对应的扇形圆心角是度;在该校2000名学生中随机提问一名学生,对“防震减灾”不了解...的概率为。(2)请补全频数分布直方图。14.假期,六盘水市教育局组织部分教师分别到A.B.C.D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:(1)若去C地的车票占全部车票的30%,则去C地的车票数量是张,补全统计图.(2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?(3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.15.某中学举行数学知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图.根据图中所给出的信息解答下列问题:(1)二等奖所占的比例是多少?(2)这次数学知识竞赛获得二等奖的人数是多少?(3)请将条形统计图补充完整;(4)若给所有参赛学生每人发一张卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出的卡片上是写有一等奖学生名字的概率.16.为了解“阳光体育”活动情况,我市教育部门在市三中2000名学生中,随机抽取了若干学生进行问卷调查(要求每位学生只能填写一种自己喜欢的活动),并将调查的结果绘制成如图的两幅不完整的统计图:根据以上信息解答下列问题:(1)参加调查的人数共有人;在扇形图中,表示“C”的扇形的圆心角为度;(2)补全条形统计图,并计算扇形统计图中的m;(3)若要从该校喜欢“B”项目的学生中随机选择100名,则喜欢该项目的小华同学被选中的概率是多少?17.西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类:A—特别好、B—好、C—一般、D—较差,并将调查结果绘制成两幅不完整的统计图.请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表或画树状图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.18.甲乙两单位随机选派相同人数参加科普知识比赛;每人得分成绩只有70分、80分、90分三种结果中一种,已知两单位得80分的人数相同,根据下列统计图回答问题.(1)求甲单位得90分的人数,将甲单位职工得分条形统计图补充完整;(2)分别计算两个单位职工参加比赛成绩的平均分,由此你能估计出哪个单位职工对此次科普知识掌握较好,并说明理由;(3)现从甲单位得80分和90分的人中任选两个人,列出所有的选取结果,并求两人得分不同的概率(用大写字母代表得90分的人,小写字母代表得80分的人).参考答案1.解:(1)∵1500÷24%=6250,6250×7.6%=475,(2)老王被摇中的概率为:4751=9582。(3)2011年廉租房共有6250×8%=500套,500(1+10%)=550套,2.解:(1)200。(2)70;30。(3)720。3.解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135;儿童玩具占得百分比是(90÷300)×100%=30%。童装占得百分比1-30%-25%=45%。(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×85%=63.75,童装中合格的数量是135×80%=108,∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是8163.7510884.25%3004.解:(1)160,40,90°。(2)∵P(红)=201=608,P(黄)=401=1604,∴每转动一次转盘获得购物券金额的平均数是:1160+20=12.584(元)。5.解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人。(2)喜爱C粽的人数:600-180-60-240=120,频率:120÷600=20%;喜爱A粽的频率:180÷600=30%。据此补充两幅统计图如图:(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人。(4)画树状图如下:∵共有12种等可能结果,第二个吃到的恰好是C粽的情况有3种,∴第二个吃到的恰好是C粽的概率是31=1
本文标题:中考数学概率与统计综合练习题及答案(1)
链接地址:https://www.777doc.com/doc-5745593 .html