您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 一次函数与平行四边形综合
第1页(共13页)一.解答题(共3小题)1.如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.第2页(共13页)3.如图,在平面直角坐标系中,直线y=﹣x+8分别交两轴于点A、B,点C为线段AB的中点,点D在线段OA上,且CD的长是方程的根.(1)求点D的坐标;(2)求直线CD的解析式;(3)在平面内是否存在这样的点F,使以A、C、D、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,不必说明理由.第3页(共13页)参考答案与试题解析一.解答题(共3小题)1.(2015•齐齐哈尔)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵|OA﹣8|+(OB﹣6)2=0,∴OA=8,OB=6,在直角△AOB中,AB===10;(2)∵BC平分∠ABO,∴OC=CD,设OC=x,则AC=8﹣x,CD=x.∵△ACD和△ABO中,∠CAD=∠BAO,∠ADC=∠AOB=90°,∴△ACD∽△AOB,∴,即,解得:x=3.即OC=3,则C的坐标是(﹣3,0).第4页(共13页)设AB的解析式是y=kx+b,根据题意得解得:则直线AB的解析式是y=x+6,设CD的解析式是y=﹣x+m,则4+m=0,则m=﹣4.则直线CE的解析式是y=﹣x﹣4;(3)①当AB为矩形的边时,如图所示矩形AM1P1B,易知BC的直线方程为y=2x+6,设M1(m,2m+6),P1(x,y),因为A(﹣8,0),B(0,6),则AM12=(m+8)2+(2m+6)2,=5m2+40m+100,BM12=m2+(2m+6﹣6)2=5m2,AB=10,根据AB2+AM12=BM12得100+5m2+40m+100=5m2,m=﹣5,∴M1(﹣5,﹣4),BM1中点坐标为(﹣,1),BM1中点同时也是AP1中点,则有,解得P1(3,2)②当AB为矩形的对角线时,此时有AB2=AM22+BM22,即100=5m2+40m+100+5m2,m=﹣4或m=0(舍去),∴M2(﹣4,﹣2),AB中点坐标为(﹣4,3),AB中点同时也是P2M2中点,则有,解得P2(﹣4,8)综上可得,满足条件的P点的坐标为P1(3,2)或P2(﹣4,8).第5页(共13页)2.(2015•黑龙江)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【解答】解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,第6页(共13页)把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S△OFH=××=;(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,由(2)可知OF=,OD=4,则有△MOF∽△FOD,∴=,即=,解得OM=,第7页(共13页)∴M(﹣,0),且D(4,0),∴G(,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N点坐标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,第8页(共13页)∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).3.(2015•龙沙区一模)如图,在平面直角坐标系中,直线y=﹣x+8分别交两轴于点A、B,点C为线段AB的中点,点D在线段OA上,且CD的长是方程的根.(1)求点D的坐标;(2)求直线CD的解析式;(3)在平面内是否存在这样的点F,使以A、C、D、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,不必说明理由.【解答】解:(1)∵直线y=﹣x+8分别交两轴于点A、B,∴点A的坐标是(8,0),点B的坐标是(0,8),∵点C为线段AB的中点,∴点C的坐标是(4,4),第9页(共13页)由,解得x=5,∴CD=5,设点D的坐标是(m,0)(m>0),则,解得m=1或m=7,∴点D的坐标是(1,0)或(7,0).(2)①当点D的坐标是(1,0)时,设直线CD的解析式是y=ax+b,则解得∴直线CD的解析式是y=x﹣.②当点D的坐标是(7,0)时,设直线CD的解析式是y=cx+d,则解得∴直线CD的解析式是y=﹣x.(3)存在点F,使以A、C、D、F为顶点的四边形为平行四边形.①当直线CD的解析式是y=x﹣时,设AF所在的直线的解析式是y=+m,∵点A的坐标是(8,0),第10页(共13页)∴,解得m=﹣,∴AF所在的直线的解析式是y=﹣.Ⅰ、如图1,,设点F的坐标是(p,),则DF的中点E的坐标是(),∵点A的坐标是(8,0),点C的坐标是(4,4),∴AC的中点E的坐标是(6,2),∴=6,解得p=11,∴点F的坐标是(11,4).Ⅱ、如图2,,设点F的坐标是(p,),则CF的中点G的坐标是(),∵点A的坐标是(8,0),点D的坐标是(1,0),第11页(共13页)∴AD的中点G的坐标是(4.5,0),∴,解得p=5,∴点F的坐标是(5,﹣4).Ⅲ、如图3,当CF∥AD时,,设点F的坐标是(p,4),则AF的中点E的坐标是(,2),∵点D的坐标是(1,0),点C的坐标是(4,4),∴CD的中点E的坐标是(2.5,2),∴=2.5,解得p=﹣3,∴点F的坐标是(﹣3,4).②当直线CD的解析式是y=﹣x+时,设AF所在的直线的解析式是y=﹣+n,∵点A的坐标是(8,0),∴,解得n=,∴AF所在的直线的解析式是y=﹣+.第12页(共13页)Ⅰ、如图4,,设点F的坐标是(p,﹣),则DF的中点M的坐标是(),∵点A的坐标是(8,0),点C的坐标是(4,4),∴AC的中点M的坐标是(6,2),∴=6,解得p=5,∴点F的坐标是(5,4).Ⅱ、如图5,,设点F的坐标是(p,﹣),则CF的中点N的坐标是(,),∵点A的坐标是(8,0),点D的坐标是(7,0),∴AD的中点N的坐标是(7.5,0),∴,解得p=11,第13页(共13页)∴点F的坐标是(11,﹣4).Ⅲ、如图6,当CF∥AD时,,设点F的坐标是(p,4),则AF的中点E的坐标是(,2),∵点D的坐标是(7,0),点C的坐标是(4,4),∴CD的中点E的坐标是(5.5,2),∴=5.5,解得p=3,∴点F的坐标是(3,4).综上,可得点F的坐标是(11,4),(5,﹣4),(﹣3,4),(5,4),(11,﹣4)或(3,4).
本文标题:一次函数与平行四边形综合
链接地址:https://www.777doc.com/doc-5754929 .html