您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 20061224125516648历年数学高考试题
海量资源尽在星星文库:卷(选择题)和第II卷(非选择题)两部分。第I卷1至2页。第II卷3至8页。共150分。考试时间120分钟。第I卷(选择题共60分)注意事项:l.答第I卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A或B)用铅笔涂写在答题卡上。2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后。再选涂其它答案,不能答在试题卷上。3.考试结束,监考人将本试卷和答题卡一并收回。参考公式:正棱台、圆台的侧面积公式三角函数的积化和差公式sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαsinβ=-[cos(α+β)-cos(α-β)]/2正棱台、圆台的侧面积公式:S台侧=(c'+c)L/2其中c'和c表示圆台的上下底面的周长,L表示斜高或母线长。台体的体积公式:其中s,s'分别表示上下底面积,h表示高。一.选择题:本大题共14小题;第(1)—(1O)题每小题4分,第(11)—(14)题每小题5分,共60分海量资源尽在星星文库:在每小题给出的四个选顶中,只有一顶是符合题目要求的。(1)如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是(A)(M∩P〕∩S(B)(M∩P)∪S(C〕(M∩P)∩(D〕(M∩P)∪(2)已知映射f:A→B,其中,集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中元素在映射f下的象,且对任意的a∈A,在B中和它对应的元素是|a|,则集合B中元素的个数是(A)4(B)5(C)6(D)7(3)若函数y=f(x)的反函数是y=g(x),f(a)=b,ab≠0,则g(b)等于(A)a(B)a-1(C)b(D)b-1(4)函数f(x)=Msin(ωx+ρ)(ω0)在区间[a,b]上是增函数,且f(a)=-M,f(b)=M,则函数g(x)=Mcos(ωx+ρ)在[a,b]上(A)是增函数(B)是减函数(C)可以取得最大值M(D)可以取得最小值-M(5)若f(x)sinx是周期为∏的奇函数,则f(x)可以是(A)sinx(B)cosx(C)sin2x(D)cos2x(6)曲线x2+y2+2x-2y=0关于(A)直线x=轴对称(B)直线y=-x轴对称海量资源尽在星星文库:(C)点(-2,)中心对称(D)点(-,0)中心对称(7)若干毫升水倒人底面半径为2cm的圆柱形器皿中,量得水面的高为6cm,若将这些水倒人轴截面是正三角形的倒圆锥形器皿中,则水面的高度是(A)6cm(B)6cm(C)2cm(D)3cm(8)若(2x+)3=a0+a1x+a2x2+a3x3,则(a0+a2)2-(a1+a3)2的值为(A)-1(B)l(C)0(D)2(9)直线x+y-2=O截圆x2+y2=4得的劣弧所对的圆心角为(A)(B)(C)(D)(10)如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,EF=3/2,EF与面AC的距离为2,则该多面体的体积为(A)9/2(B)5(C)6(D)15/2(11)若sina>tga>ctga(-<a<),则a∈(A)(-,-)(B)(-,0)(C)(0,)(D)(,)(12)如果圆台的上底面半径为5,下底面半径为R,中截面把圆台分为上、下两个圆台,它们的海量资源尽在星星文库::2,那么R=(A)10(B)15(C)20(D)25(13)给出下列曲线:①4x+2y-1=0②x2+y2=3③x2/2+y2=1④x2/2-y2=1其中与直线r=-2x-3有交点的所有曲线是(A)①③(B)②④(C)①②③(D)②③④(14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘根据需要,软件至少买3片,磁盘至少买2盒则不同的选购方式共有(A)5种(B)6种(C)7种(D)8种第II卷(非选择题共90分)注意事项:1.第II卷共6页,用钢笔或圆珠笔直接答在试题卷中。2.答卷前将密封线内的项目填写清楚。二,填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线(15)设椭圆(x2/a2)+(y2/b2)=1(ab0)的右焦点为F1,右准线为l1若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是_______(16)在一块并排10垄的田地中,选择2垄分别种植A,B两种作物,每种作物种植一垄,为有利于作海量资源尽在星星文库:物生长。要求A、B两种作物的问隔不小于6垄,则不同的选垄方法共有_____种(用数字作答)(17)若正数a、b满足ab=a+b+3,则ab的取值范围是__________(18)α、β是两个不同的平面,m、n是平面α及β之外的两条不同直线,给出四个论断:①m⊥n②α⊥β③n⊥β④m⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:______________________________________________________________________三.解答题:本大题共6小题;共74分解答应写出文字说明、证明过程或演算步骤(19)(本小题满分10分)解方程-3lgx+4=0(20)(本小题满分12分)数列{an}的前n项和记为Sn,已知an=5Sn-3(n∈N)求(al+a3+…+a2n-1)的值。(21)(本小题满分12分)设复数z=3cosθ+isinθ.求函数y=tg(θ-argz)(0θ)的最大值以及对应的θ值(22)(本小题满分12分〕如图,已知正四棱柱ABCD—A1B1C1D1,点E在棱D1D上,截面EAC∥D1B,且面EAC与底面ABCD所成的角为45°,AB=a(Ⅰ)求截画EAC的面积;海量资源尽在星星文库:(Ⅱ)求异面直线A1B1与AC之间的距离;(Ⅲ〕求三棱B1—EAC的体积。(23)(本小题满分14分)下图为一台冷轧机的示意图。冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出。(1)输入带钢的厚度为a,输出带钢的厚度为β,若每对轧辊的减薄率不超过r0,问冷轧机至少需要安装多少对轧辊?(Ⅱ)已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600mm,若第k对轧辊有缺陷,每滚动一周在带钢上压出一个疵点,在冷轧机输出的带钢上,疵点的间距为Lk,为了便于检修,请计算L1、L2、L3并填入下表(轧钢过程中,带钢宽度不变,且不考虑损耗)。轧辊序号1234疵点间距Lk(单位:mm)1600(24)(本小题满分14分)如图,给出定点A(a,0)(a>0,a≠1)和直线l:x=-LB是直线l上的动点,∠BOA的海量资源尽在星星文库:,求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系。说明:一、本解答指出了每题要考查的主要知识和能力,并给了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难,可视影响的程度决定后继部分的给分,但不得超过该部分解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。四、只给整数分数,选择题和填空题不给中间分。一.选择题:本题考查基本知识和基本运算。第(1)-第(10)题每小题4分,第(11)-(14)题每小题5分,满分60分。(1)C(2)A(3)A(4)C(5)B海量资源尽在星星文库:(6)B(7)B(8)A(9)C(10)D(11)B(12)D(13)D(14)C二.填空题:本题考查基本知识和基本运算,每小题4分,满分16分(15)1/2(16)12(17)[9,+∞](18)m⊥a,n⊥β,a⊥β==m⊥n或m⊥n,m⊥a,m⊥β==a⊥β三.解答题(19)本小题主要考查对数方程、无理方程的解法和运算能力。满分10分。解:设(31gx-2)1/2=y,原方程化为y-y2+2=0.----4分解得y=-1,y=2.----6分因为(31gx-2)1/2≥0,所以将y=-1舍去,由(31gx-2)1/2=2得lgx=2,所以x=100.----9分经检验x=100为原方程的解.----10分(20)本小题主要考查等比数列和数列极限等基础知识,满分12分。解:由Sn=a1+a2+…+an知an=Sn-Sn-1(n≥2),a1=S1,----2分由已知an=5Sn-3得海量资源尽在星星文库:=5Sn-1-3.----4分于是an-an-1=5(Sn-Sn-1)=5an,所以an=-(an-1/4).----6分由a1=5S1-3,得a1=3/4.所以,数列{an}是首项a1=3/4,公比q=-1/4的等比数列.----8分由此知数列a1,a3,a5,…,a2n-1,……是首项为a1=3/4,公比为(-1/4)2的等比数列。所以limn→∞(a1+a3+a5+…+a2n-1)=(3/4)/[1-(-1/4)2]=4/5.12分(21)本小题主要考查复数的基本概念、三角公式和不等式等基本知识,考查综合运用所学数学知识解决问题的能力,满分12分。解:由0θπ/2得tgθ0.由z=3cosθ+isinθ得tg(argz)=sinθ/3cosθ=1/3tgθ.----3分故y=tg(θ-argz)=(tgθ-1/3tgθ)/(1+1/3tg2θ)----6分=2/[(3/tgθ)+tgθ].∵(3/tgθ)+tgθ≥2(3)1/2,∴2/[(3/tgθ)+tgθ]≤(3)1/2/3.----9分当且仅当3/tgθ=tgθ(0θπ/2)时,即tgθ=(3)1/2时,上式取等号。所以当θ=π/3时,函数y取得最大值(3)1/2/3。----12分。海量资源尽在星星文库:(22)本小题主要考查空间线面关系,二面角和距离的概念,逻辑思维能力、空间想象能力及运算能力,满分12分。(1)解:如图,连结DB交AC于O,连结EO。∵底面ABCD是正方形∴DO⊥AC。又∵ED⊥底面AC,∴EO⊥AC。∴∠EOD是面EAC与底面AC所成二面角的平面角,----2分∴∠EOD=45°。DO=(2)1/2/2a,AC=(2)1/2a,Eo=[(2)1/2a·sec45°]/2=a.故S△EAC=(2)1/2×a2/24分(II)解:由题设ABCD-A1B1C1D1是正四棱柱,得A1A⊥底面AC,A1A⊥AC。又A1A⊥A1B1,∴A1A是异面直线A1B1与AC间的公垂线。----6分∵D1B∥面EAC,且面D1BD与面EAC交线为EO,∴D1B∥EO。又O是DB的中点,∴E是D1D的中点,D1B=2ED=2a。异面直线A1B1与AC间的距离为(2)1/2a。----8分(III)解法一:如图,连结D1B1。海量资源尽在星星文库:∵D1D=DB=(2)1/2a,∴BDD1B1是正方形。连结B1D交D1B于P,交EO于Q。∵B1D⊥D1B。EO∥D1B,∴B1D⊥EO又AC⊥EO,AC⊥ED,∴AC⊥面BDD1B1∴B1D⊥AC∴B1D⊥面EAC。∴B1Q是三棱锥B1-EAC的高。----10分由DQ=PQ,得B1Q=3B1D/4=3a/2。∴VB1-EAC=(1/3)·[(2)1/2a2/2]·(3/20=(2)1/2·a3/4.所以三棱锥了-EAC的体积是(2)1/2·a3/4.----12分解法二:连结B1O,则VB1-EAC=2VA-EOB1
本文标题:20061224125516648历年数学高考试题
链接地址:https://www.777doc.com/doc-5757107 .html