您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2016年河南省周口市扶沟县包屯高中高考数学二模试卷理科
高考帮——帮你实现大学梦想!1/212016年河南省周口市扶沟县包屯高中高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则(∁UA)∩B=()A.[﹣1,0]B.[﹣1,2]C.(1,2]D.(﹣∞,1]∪[2,+∞)2.设复数z=1+i(i是虚数单位),则|+z|=()A.2B.C.3D.23.不等式|2x﹣1|>x+2的解集是()A.(﹣,3)B.(﹣∞,﹣)∪(3,+∞)C.(﹣∞,﹣3)∪(,+∞)D.(﹣3,+∞)4.若函数f(x)=2sin(ωx+θ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0B.﹣2或2C.0D.﹣2或05.一算法的程序框图如图,若输出的y=,则输入的x的值可能为()A.﹣1B.0C.1D.56.已知双曲线,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是,则双曲线C的方程为()A.x2﹣=1B.﹣y2=1C.﹣y2=1D.x2﹣=17.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b;高考帮——帮你实现大学梦想!2/21④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①②B.②③C.①④D.②④8.设点M(x,y)是不等式组所表示的平面区域Ω中任取的一点,O为坐标原点,则|OM|≤2的概率为()A.B.C.D.9.已知等差数列{an}的前n项和为Sn,若S17=170,则a7+a9+a11的值为()A.10B.20C.25D.3010.已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值范围为()A.<α≤B.<α<πC.≤α<πD.<α≤11.已知f(x)=在x=0处取得最小值,则a的最大值是()A.4B.1C.3D.212.若对∀x,y∈[0,+∞),不等式4ax≤ex+y﹣2+ex﹣y﹣2+2恒成立,则实数a的最大值是()A.B.1C.2D.二、填空题:本大题共4小题,每题5分,满分20分,将答案填在答题纸上13.命题“对任意x≤0,都有x2<0”的否定为_______.14.若(ax2+)6的展开式中x3项的系数为20,则ab的值为_______.15.设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能成为三角形的三条边长,那么M的最小值为_______.16.已知||=1,||=,=0,点C在∠AOB内,且∠AOC=30°,设=m+n(m、n∈R),则等于_______.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.等差数列{an}的公差为d(d<0),ai∈{1,﹣2,3,﹣4,5}(i=1,2,3),则数列{bn}中,b1=1,点Bn(n,bn)在函数g(x)=a•2x(a是常数)的图象上.(Ⅰ)求数列{an}、{bn}的通项公式;(Ⅱ)若cn=an•bn,求数列{cn}的前n项和Sn.高考帮——帮你实现大学梦想!3/2118.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.(1)求平面AEF与平面ABC所成角α的余弦值;(2)若G为BC的中点,A1G与平面AEF交于H,且设=,求λ的值.19.甲、乙两同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如下茎叶图所示,已知两同学这8次成绩的平均分都是85分.(1)求x;并由图中数据直观判断,甲、乙两同学中哪一位的成绩比较稳定?(2)若将频率视为概率,对甲同学在今后3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.甲乙98758x218003553902520.已知动点P到直线x=2的距离等于P到圆x2﹣7x+y2+4=0的切线长,设点P的轨迹为曲线E;(1)求曲线E的方程;(2)是否存在一点Q(m,n),过点Q任作一直线与轨迹E交于M、N两点,点(,)都在以原点为圆心,定值r为半径的圆上?若存在,求出m、n、r的值;若不存在,说明理由.21.已知函数(其中常数a,b∈R),.(Ⅰ)当a=1时,若函数f(x)是奇函数,求f(x)的极值点;(Ⅱ)若a≠0,求函数f(x)的单调递增区间;(Ⅲ)当时,求函数g(x)在[0,a]上的最小值h(a),并探索:是否存在满足条件的实数a,使得对任意的x∈R,f(x)>h(a)恒成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲](共1小题,满分10分)高考帮——帮你实现大学梦想!4/2122.如图,P为圆外一点,PD为圆的切线,切点为D,AB为圆的一条直径,过点P作AB的垂线交圆于C、E两点(C、D两点在AB的同侧),垂足为F,连接AD交PE于点G.(1)证明:PC=PD;(2)若AC=BD,求证:线段AB与DE互相平分.[选修4-4:坐标系与参数方程]23.已知直角坐标系xOy的原点和极坐标系Ox的极点重合,x轴非负半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为,(φ为参数).(1)在极坐标系下,若曲线C与射线θ=和射线θ=﹣分别交于A,B两点,求△AOB的面积;(2)给出直线l的极坐标方程为ρcosθ﹣ρsinθ=2,求曲线C与直线l在平面直角坐标系中的交点坐标.[选修4-5:不等式选讲]24.已知:函数f(x)=|1﹣3x|+3+ax.(1)若a=﹣1,解不等式f(x)≤5;(2)若函数f(x)有最小值,求实数a的取值范围.高考帮——帮你实现大学梦想!5/212016年河南省周口市扶沟县包屯高中高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则(∁UA)∩B=()A.[﹣1,0]B.[﹣1,2]C.(1,2]D.(﹣∞,1]∪[2,+∞)【考点】交、并、补集的混合运算.【分析】化简集合B,求出A的补集,再计算(∁UA)∩B.【解答】解:全集U=R,集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0}={x|0≤x≤2},∴∁UA={x|x<﹣1或x>1},∴(∁UA)∩B={x|1<x≤2}=(1,2].故选:C.2.设复数z=1+i(i是虚数单位),则|+z|=()A.2B.C.3D.2【考点】复数代数形式的乘除运算.【分析】先求出+z,再求出其模即可.【解答】解:∵z=1+i,∴+z=+1+i===1﹣i+1+i=2,故|+z|=2,故选:A.3.不等式|2x﹣1|>x+2的解集是()A.(﹣,3)B.(﹣∞,﹣)∪(3,+∞)C.(﹣∞,﹣3)∪(,+∞)D.(﹣3,+∞)【考点】绝对值三角不等式.【分析】选择题,对x+2进行分类讨论,可直接利用绝对值不等式公式解决:|x|>a等价于x>a或x<﹣a,最后求并集即可.【解答】解:当x+2>0时,不等式可化为2x﹣1>x+2或2x﹣1<﹣(x+2),∴x>3或2x﹣1<﹣x﹣2,高考帮——帮你实现大学梦想!6/21∴x>3或﹣2<x<﹣,当x+2≤0时,即x≤﹣2,显然成立,故x的范围为x>3或x<﹣故选:B.4.若函数f(x)=2sin(ωx+θ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0B.﹣2或2C.0D.﹣2或0【考点】正弦函数的图象.【分析】由f(+x)=f(﹣x),可得x=是函数f(x)的对称轴,利用三角函数的性质即可得到结论.【解答】解:∵函数f(x)=2sin(ωx+θ)对任意x都有f(+x)=f(﹣x),∴x=是函数f(x)的对称轴,即此时函数f(x)取得最值,即f()=±2,故选:B5.一算法的程序框图如图,若输出的y=,则输入的x的值可能为()A.﹣1B.0C.1D.5【考点】程序框图.【分析】模拟执行程序可得程序功能是求分段函数y=的值,根据已知即可求解.高考帮——帮你实现大学梦想!7/21【解答】解:模拟执行程序可得程序功能是求分段函数y=的值,∵y=,∴sin()=∴=2kπ+,k∈Z,即可解得x=12k+1,k∈Z.∴当k=0时,有x=1.故选:C.6.已知双曲线,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是,则双曲线C的方程为()A.x2﹣=1B.﹣y2=1C.﹣y2=1D.x2﹣=1【考点】双曲线的简单性质.【分析】由题意可得c﹣a=1,求出渐近线方程和焦点的坐标,运用点到直线的距离公式,可得b=,由a,b,c的关系,可得a,进而得到所求双曲线的方程.【解答】解:双曲线的一个顶点(a,0)到较近焦点(c,0)的距离为1,可得c﹣a=1,由双曲线的渐近线方程为y=x,则焦点(c,0)到渐近线的距离为d==b=,又c2﹣a2=b2=3,解得a=1,c=2,即有双曲线的方程为x2﹣=1.故选:A.7.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.高考帮——帮你实现大学梦想!8/21其中真命题的序号是()A.①②B.②③C.①④D.②④【考点】空间中直线与平面之间的位置关系.【分析】与立体几何有关的命题真假判断,要多结合空间图形,充分利用相关的公里、定理解答.判断线与线、线与面、面与面之间的关系,可将线线、线面、面面平行(垂直)的性质互相转换,进行证明,也可将题目的中直线放在空间正方体内进行分析.【解答】解:因为空间中,用a,b,c表示三条不同的直线,①中正方体从同一点出发的三条线,满足已知但是a⊥c,所以①错误;②若a∥b,b∥c,则a∥c,满足平行线公理,所以②正确;③平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以③错误;④垂直于同一平面的两直线平行,由线面垂直的性质定理判断④正确;故选:D.8.设点M(x,y)是不等式组所表示的平面区域Ω中任取的一点,O为坐标原点,则|OM|≤2的概率为()A.B.C.D.【考点】几何概型.【分析】若x,y∈R,则区域W的面积是2×2=4.满足|OM|≤2的点M构成的区域为{(x,y)|﹣1≤x≤1,0≤y≤2,x2+y2≤4},求出面积,即可求出概率.【解答】解:这是一个几何概率模型.若x,y∈R,则区域W的面积是2×2=4.满足|OM|≤2的点M构成的区域为{(x,y)|﹣1≤x≤1,0≤y≤2,x2+y2≤4},面积为2[﹣(﹣)]=+,故|OM|≤2的概率为.故选:D.高考帮——帮你实现大学梦想!9/219.已知等差数列{an}的前n项和为Sn,若S17=170,则a7+a9+a11的值为()A.10B.20C.25D.30【考点】等差数列的前n项和.【分析】由等差数列的性质可得a7+a9+a11=3a9,而s17=17a9,故本题可解.【解答】解:∵a1+a17=2a9,∴s17==17a9=170,∴a9=10,∴a7+a9+a11=3a9=30;故选D.10.已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值范围为()A.<α≤B.<α<πC.≤α<πD.<α≤【考点】余弦定理;正弦定理.【分析】由已知根据三角形内角和定理得3α>π,从而解得α>,妨设三角形三边为a﹣d,a,a+d,(a>0,d>0),利用余弦定理可得cosα=2﹣>﹣1,结合三角形内角的范围即可得解.【解答】解:∵α为△ABC最大内角,∴3α>π,即α>,由题意,不妨设三角形三
本文标题:2016年河南省周口市扶沟县包屯高中高考数学二模试卷理科
链接地址:https://www.777doc.com/doc-5761382 .html