您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 人教A版高中数学选修11单元质量评估一Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。单元质量评估(一)第一章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·宜昌高二检测)下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若ab,则ac2bc2;④矩形的对角线互相垂直.其中假命题的个数是()A.1B.2C.3D.4【解析】选D.①等底等高的三角形都是面积相等的三角形,但不一定全等;②当x,y中一个为零,另一个不为零时,|x|+|y|≠0;③当c=0时不成立;④菱形的对角线互相垂直,矩形的对角线不一定垂直.【补偿训练】下列命题是真命题的是()A.y=tanx的定义域是RB.y=的值域为RC.y=的递减区间为(-∞,0)∪(0,+∞)D.y=sin2x-cos2x的最小正周期是π【解析】选D.当x=kπ+,k∈Z时,y=tanx无意义,A错;函数y=的定义域为.答案:【拓展延伸】完美解决参数问题通过已知条件,探索命题的真假,然后求解参数的取值范围,是逻辑用语部分常见的、基本的题型.解决此类问题要从三个方面入手:(1)熟练掌握真值表,判断单个命题p,q的真假.(2)具备丰富的基础知识储备,求解单个命题成立的参数范围.(3)辅助应用集合的运算确定参数的最后范围.15.(2016·徐州高二检测)已知命题p:≤1,命题q:x2-2x+1-m20(m0),若p是q的充分不必要条件,则实数m的范围是.【解析】命题p首先化简为-1≤x≤3,命题q是二次不等式,p是q的充分不必要条件说明当-1≤x≤3时不等式x2-2x+1-m20恒成立,故又m0,故可解得m2.答案:(2,+∞)16.给出下列命题:①数列,3,,,3…的一个通项公式是;②当k∈(-3,0)时,不等式2kx2+kx-0对一切实数x都成立;③函数y=sin2-sin2是周期为π的奇函数;④两两相交且不过同一点的三条直线必在同一个平面内.其中,真命题的序号是.【解析】①数列,3=,,,3=…的被开方数构成一个以3为首项,以6为公差的等差数列,故它的一个通项公式是,故①正确;②当k∈(-3,0)时,因为Δ=k2+3k0,故函数y=2kx2+kx-的图象开口朝下,且与x轴无交点,故不等式2kx2+kx-0对一切实数x都成立,故②正确;③函数y=sin2-sin2=sin2-cos2=-cos=sin2x,是周期为π的奇函数,故③正确;④两两相交且不过同一点的三条直线必在同一个平面内,故④正确.故真命题的序号是①②③④.答案:①②③④【补偿训练】下列正确命题有.①“sinθ=”是“θ=30°”的充分不必要条件;②如果命题“(p或q)”为假命题,则p,q中至多有一个为真命题;③设a0,b1,若a+b=2,则+的最小值为3+2;④函数f(x)=3ax+1-2a在(-1,1)上存在x0,使f(x0)=0,则a的取值范围是a-1或a.【解析】①由θ=30°可得sinθ=,反之不成立,因此“sinθ=”是“θ=30°”的必要不充分条件;②命题“(p或q)”为假命题,则p,q都是假命题;③a+b=2,所以a+b-1=1,+=(a+b-1)=3++≥3+2,最小值为3+2;④由题意得f(-1)f(1)0,所以(-5a+1)(a-1)0,所以a-1或a.答案:③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)判断下列命题是全称命题还是特称命题,并判断其真假.(1)对数函数都是单调函数.(2)至少有一个整数,它既能被11整除,又能被9整除.(3)∀x∈{x|x0},x+≥2.(4)∃x0∈Z,log2x02.【解析】(1)本题隐含了全称量词“所有的”,其实命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,真命题.(3)命题中含有全称量词“∀”,是全称命题,真命题.(4)命题中含有存在量词“∃”,是特称命题,真命题.18.(12分)已知f(x)=x2,g(x)=-m,若对∀x1∈,∃x2∈,有f(x1)≥g(x2),求实数m的取值范围.【解析】根据题意知,f(x1)min≥g(x2)min,当x1∈时,f(x1)min=0.当x2∈时,g(x2)=-m的最小值为g(2)=-m.因此0≥-m,解之得m≥.故实数m的取值范围是.19.(12分)(2016·马鞍山高二检测)已知曲线C:x2+y2+Gx+Ey+F=0(G2+E2-4F0),求曲线C在x轴上所截的线段的长度为1的充要条件,证明你的结论.【解题指南】先求出必要条件,再证明其充分性.【解析】必要性:令y=0,则x2+Gx+F=0.设x1,x2为此方程的根,若|x1-x2|==1,则G2-4F=1.充分性:若G2-4F=1,x2+Gx+F=0有两根为x1,x2,且x1+x2=-G,x1·x2=F,|x1-x2|2=(x1+x2)2-4x1·x2=G2-4F=1.故所求的充要条件是G2-4F=1.20.(12分)(2016·汕头高二检测)已知p:-2≤1-≤2,q:x2-2x+1-m2≤0(m0),且p是q的必要不充分条件,求实数m的取值范围.【解题指南】先解不等式求出p真和q真的条件.p真:-2≤x≤10;q真:1-m≤x≤1+m,然后利用p是q的必要不充分条件,根据集合之间的包含关系建立关于m的不等式,求出m的取值范围.【解析】由x2-2x+1-m2≤0,得1-m≤x≤1+m,所以q:A={x|x1+m或x1-m,m0}.由-2≤1-≤2,得-2≤x≤10.所以p:B={x|x10或x-2},因为p是q的必要不充分条件,所以AB,所以21.(12分)(2016·聊城高二检测)设命题p:函数f(x)=lg的定义域为R:命题q:3x-9xa对一切的实数x恒成立,如果命题“p且q”为假命题,求实数a的取值范围.【解析】要使函数f(x)=lg的定义域为R,则不等式ax2-x+0对于一切x∈R恒成立,若a=0,则不等式等价为-x0,解得x0,不满足恒成立.若a≠0,则满足条件即解得即a2,所以p:a2.因为g(x)=3x-9x=-+≤,所以要使3x-9xa对一切的实数x的恒成立,则a,即q:a.要使p且q为假,则p,q至少有一个为假命题.当p,q都为真命题时,满足即a2,所以p,q至少有一个为假命题时有a≤2,即实数a的取值范围是a≤2.22.(12分)(2016·福州高二检测)已知a0,b0,函数f(x)=ax-bx2.(1)求证:∀x∈R均有f(x)≤1是a≤2的充分条件.(2)当b=1时,求f(x)≤1,x∈恒成立的充要条件.【解析】(1)f(x)=ax-bx2=-b+,因为∀x∈R,f(x)≤1,所以≤1,又a0,b0,所以a≤2,所以∀x∈R均有f(x)≤1是a≤2的充分条件.(2)因为b=1,所以f(x)=ax-x2,当x=0时,f(x)=0≤1成立,当x∈(0,1]时,f(x)≤1恒成立,即a≤x+在(0,1]上恒成立,又=2,此时x=1,所以0a≤2,当0a≤2时,a≤x+在(0,1]上恒成立,所以f(x)≤1在(0,1]上恒成立,所以f(x)≤1,x∈(0,1]上恒成立的充要条件为0a≤2.关闭Word文档返回原板块
本文标题:人教A版高中数学选修11单元质量评估一Word版含答案
链接地址:https://www.777doc.com/doc-5766807 .html