您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高一数学人教版必修3第四章线性回归方程Word版含解析
重点列表:重点名称重要指数重点1相关关系的判断★★★★重点2线性回归方程有关概念★★★重点3散点图★★★★重点详解:1.变量间的相关关系常见的两变量之间的关系有两类:一类是确定性的函数关系,另一类是________;与函数关系不同,相关关系是一种________关系,带有随机性.2.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有____________,这条直线叫________.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为________;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为________.※(3)相关系数r=njjniiniiiyyxxyyxx12121)()())((,当r>0时,表示两个变量正相关;当r<0时,表示两个变量负相关.r的绝对值越接近________,表示两个变量的线性相关性越强;r的绝对值越接近________,表示两个变量的线性相关性越弱.通常当r的绝对值大于0.75时,认为两个变量具有很强的线性相关关系.3.回归直线方程(1)通过求Q=niiixy12)(的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做____________.该式取最小值时的α,β的值即分别为,.(2)两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(xn,yn),其回归方程为axbyˆˆˆ,则.ˆˆ,)())((ˆ1221121xbyaxnxyxnyxxxyyxxbniiniiiniiniii【答案】1.相关关系非确定性2.(1)线性相关关系回归直线(2)正相关负相关(3)103.最小二乘法重点1:相关关系的判断【要点解读】在研究两个变量之间是否存在某种关系时,必须从散点图入手.对于散点图,可以做出如下判断:(1)如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.(2)如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.(3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.【考向1】确定性关系与随机关系【例题】下列变量之间的关系不是..相关关系的是()A.已知二次函数y=ax2+bx+c,其中a,c是已知常数,取b为自变量,因变量是这个函数的判别式Δ=b2-4acB.光照时间和果树亩产量C.降雪量和交通事故发生率D.每亩施用肥料量和粮食亩产量解:由函数关系和相关关系的定义可知,A中Δ=b2-4ac,因为a,c是已知常数,b为自变量,所以给定一个b的值,就有唯一确定的Δ与之对应,所以Δ与b之间是一种确定的关系,是函数关系.B,C,D中两个变量之间的关系都是相关关系.故选A.【评析】要注意函数关系与相关关系的区别:函数关系是确定性关系,而相关关系是随机的、不确定的.重点2:线性回归方程有关概念【要点解读】样本中心点一定在回归直线上【考向1】样本中心点【例题】为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人得到的试验数据中,变量x的平均值都等于s,变量y的平均值都等于t,那么下列说法正确的是()A.直线l1和l2一定有公共点(s,t)B.直线l1和l2相交,但交点不一定是(s,t)C.必有直线l1∥l2D.直线l1和l2必定重合【评析】回归方程一定通过样本点的中心(,y);中心相同的样本点的回归方程不一定相同.【考向2】线性回归直线的理解【例题】由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到回归直线方程axbyˆˆˆ,那么下面说法错误..的是()A.直线axbyˆˆˆ必经过点(,y)B.直线axbyˆˆˆ至少经过点(x1,y1),(x2,y2),…,(xn,yn)中的一个点C.直线axbyˆˆˆ的斜率=niiniiixnxyxnyx1221D.直线axbyˆˆˆ和各点(x1,y1),(x2,y2),…,(xn,yn)的偏差niiiaxby12)]ˆˆ([是该坐标平面上所有直线与这些点的偏差中最小的重点3:散点图【要点解读】根据散点图可以直观判断正负相关以及数据所对应的函数模型【考向1】正相关与负相关【例题】(1)对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()图1图2A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解:由这两个散点图可以判断,变量x与y负相关,u与v正相关,故选C.【评析】点分布在从左下角到右上角的区域时,两个变量的相关关系为正相关;点分布在从左上角到右下角的区域时,两个变量的相关关系为负相关.(2)下面是一块田的水稻产量与施化肥量的一组观测数据(单位:kg):施化肥量15202530354045水稻产量320330360410460470480(Ⅰ)将上述数据制成散点图;(Ⅱ)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?解:(Ⅰ)散点图如下:(Ⅱ)从图中可以发现施化肥量与水稻产量具有线性相关关系,当施化肥量由小到大变化时,水稻产量由小变大.图中的数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系,但水稻产量只是在一定范围内随着化肥施用量的增加而增长,不会一直随化肥施用量的增加而增长.【评析】任何一组数据(二元数据)都可以作出散点图,散点图可以直观地观察两个变量间的关系.【考向2】散点图的画法及相关关系识别【例题】(1)从左至右,观察下列三个散点图,变量x与y的关系依次为________(正相关记作①;负相关记作②;不相关记作③).(2)科研人员为了全面掌握棉花新品种的生产情况,查看了气象局对该地区年降雨量与年平均气温的统计数据(单位分别是mm,℃),并作了统计:年平均气温12.5112.8412.8413.6913.3312.7413.05年降雨量748542507813574701432(Ⅰ)试画出散点图;(Ⅱ)判断两个变量是否具有线性相关关系.解:(Ⅰ)作出散点图如图所示.(Ⅱ)由散点图可知,各点并不在一条直线附近,所以两个变量不具有线性相关关系.难点列表:难点名称难度指数难点1求回归方程及用回归方程进行估计★★★★难点2复数的模与共轭复数★★★★★难点详解:求线性回归直线方程的步骤(1)用散点图或进行相关性检验判断两个变量是否具有线性相关关系;(2)求系数b^:公式有两种形式,b^=∑ni=1(xi-x-)(yi-y-)∑ni=1(xi-x-)2=∑ni=1xiyi-nx-y-∑ni=1x2i-nx-2,根据题目具体情况灵活选用;(3)求a^:a^=y--b^x-;(4)写出回归直线方程.说明:当数据较复杂时,题目一般会给出部分中间结果,观察这些中间结果可确定选用公式的哪种形式求b^.难点1:求回归方程及用回归方程进行估计【要点解读】(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则无意义.(2)根据回归方程进行的估计仅是一个预测值,而不是真实发生的值.(3)用最小二乘法求回归方程,关键在于正确求出系数,,由于,的计算量大,计算时应仔细小心,分层进行(最好列出表格),避免因计算而产生错误.【考向1】求线性回归方程【例题】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x3456y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考值3×2.5+4×3+5×4+6×4.5=66.5)解:(1)散点图如下:(2)由系数公式可知,=4.5,y=3.5,=66.5-4×4.5×3.586-4×4.52=0.7,=3.5-0.7×4.5=0.35,所以线性回归方程为yˆ=0.7x+0.35.(3)x=100时,yˆ=0.7x+0.35=70.35,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤.【评析】牢记求线性回归方程的步骤:(1)列表;(2)计算,y,niiiyx1,niix12;(3)代入公式求,再利用xbyaˆˆ求,(4)写出回归方程.【考向2】利用线性回归方程进行预测【例题】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得101iix=80,101iiy=20,101iiiyx=184,1012iix=720.(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;(2)判断变量x与y之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y=bx+a中,b=niiniiixnxyxnyx1221,xbya,其中,y为样本平均值,线性回归方程也可写为y^=b^x+a^.解:(1)由题意知n=10,=1nniix1=8010=8,y=1nniiy1=2010=2,又niix12-n2=720-10×82=80,niiiyx1-nyx=184-10×8×2=24,由此得b=2480=0.3,a=y-b=2-0.3×8=-0.4,故所求回归方程为y=0.3x-0.4.(2)由于变量y的值随x的值增加而增加(b=0.30),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y=0.3×7-0.4=1.7(千元).难点2:非线性相关转化为线性相关【要点解读】通过观察散点图,分析其函数模型,然后转化成线性相关【考向1】非线性相关转化为线性相关【例题】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(1)根据散点图判断,y=a+bx与y=c+dx哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程.(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β^=解题指导]切入点:回归分析中对散点图的理解,回归方程的求法和应用;关键点:通过换元把非线性回归方程转化为线性回归方程求解.解](1)由散点图可以判断,y=c+dx适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=x,先建立y关于w的线性回归方程.c^=y-d^w=563-68×6.8=100.6,所以y关于w的线性回归方程为y^=100.6+68w,因此y关于x的回归方程为y^=100.6+68x.(3)①由(2)知,当x=49时,年销售量y的预报值y^=100.6+6849=576.6,年利润z的预报值z^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润
本文标题:高一数学人教版必修3第四章线性回归方程Word版含解析
链接地址:https://www.777doc.com/doc-5779481 .html