您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学人教A版必修三章末综合测评3Word版含答案
章末综合测评(三)概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为()①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.4【解析】①在明年运动会上,可能获冠军,也可能不获冠军.②李凯不一定被抽到.③任取一张不一定为1号签.④在标准大气压下水在4℃时不可能结冰,故①②③是随机事件,④是不可能事件.【答案】C2.下列说法正确的是()A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%【解析】概率只是说明事件发生的可能性大小,其发生具有随机性.故选D.【答案】D3.(2016·开封高一检测)给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是()A.16B.13C.12D.23【解析】给三人打电话的不同顺序有6种可能,其中第一个给甲打电话的可能有2种,故所求概率为P=26=13.故选B.【答案】B4.在区间[-2,1]上随机取一个数x,则x∈[0,1]的概率为()A.13B.14C.12D.23【解析】由几何概型的概率计算公式可知x∈[0,1]的概率P=1-01-(-2)=13.故选A.【答案】A5.1升水中有1只微生物,任取0.1升化验,则有微生物的概率为()A.0.1B.0.2C.0.3D.0.4【解析】本题考查的是体积型几何概型.【答案】A6.(2016·天水高一检测)从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()A.A与C互斥B.B与C互斥C.任何两个均互斥D.任何两个均不互斥【解析】互斥事件是不可能同时发生的事件,所以B与C互斥.【答案】B7.某人从甲地去乙地共走了500m,途中要过一条宽为xm的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能找到的概率为45,则河宽为()A.100mB.80mC.50mD.40m【解析】设河宽为xm,则1-x500=45,所以x=100.【答案】A8.从一批羽毛球中任取一个,如果其质量小于4.8g的概率是0.3,质量不小于4.85g的概率是0.32,那么质量在[4.8,4.85)范围内的概率是()A.0.62B.0.38C.0.70D.0.68【解析】记“取到质量小于4.8g”为事件A,“取到质量不小于4.85g”为事件B,“取到质量在[4.8,4.85)范围内”为事件C.易知事件A,B,C互斥,且A∪B∪C为必然事件.所以P(A∪B∪C)=P(A)+P(B)+P(C)=0.3+0.32+P(C)=1,即P(C)=1-0.3-0.32=0.38.【答案】B9.如图1,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于()【导学号:28750071】图1A.14B.13C.12D.23【解析】点E为边CD的中点,故所求的概率P=△ABE的面积矩形ABCD的面积=12.【答案】C10.将区间[0,1]内的均匀随机数x1转化为区间[-2,2]内的均匀随机数x,需要实施的变换为()A.x=x1*2B.x=x1*4C.x=x1*2-2D.x=x1*4-2【解析】由题意可知x=x1*(2+2)-2=4x1-2.【答案】D11.先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则()A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解析】先后抛掷两颗骰子的点数共有36个基本事件:(1,1),(1,2),(1,3),…,(6,6),并且每个基本事件都是等可能发生的.而点数之和为12的只有1个:(6,6);点数之和为11的有2个:(5,6),(6,5);点数之和为10的有3个:(4,6),(5,5),(6,4),故P1<P2<P3.【答案】B12.在5件产品中,有3件一等品和2件二等品,从中任取2件,则下列选项中以710为概率的事件是()A.恰有1件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=610,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=310,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-310=710.【答案】C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上).13.一个袋子中有5个红球,3个白球,4个绿球,8个黑球,如果随机地摸出一个球,记A={摸出黑球},B={摸出白球},C={摸出绿球},D={摸出红球},则P(A)=________;P(B)=________;P(C∪D)=________.【解析】由古典概型的算法可得P(A)=820=25,P(B)=320,P(C∪D)=P(C)+P(D)=420+520=920.【答案】2532092014.在区间(0,1)内任取一个数a,能使方程x2+2ax+12=0有两个相异实根的概率为________.【解析】方程有两个相异实根的条件是Δ=(2a)2-4×1×12=4a2-20,解得|a|22,又a∈(0,1),所以22a1,区间22,1的长度为1-22,而区间(0,1)的长度为1,所以方程有两个相异实根的概率为1-221=2-22.【答案】2-2215.甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图2所示,如果分别从甲、乙两组中各随机选取一名同学,则这两名同学的成绩相同的概率是________.图2【解析】由题意可知从甲、乙两组中各随机选取一名同学,共有9种选法,其中这两名同学的成绩相同的选法只有1种,故所求概率P=19.【答案】1916.(2016·合肥高一检测)甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a、b∈{0,1,2,…,9}.若|a-b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为________.【解析】此题可化为任意从0~9中取两数(可重复)共有10×10=100种取法.若|a-b|≤1分两类,当甲取0或9时,乙只能猜0、1或8、9共4种,当甲取2~8中的任一数字时,分别有3种选择,共3×8=24种,所以P=24+410×10=725.【答案】725三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2015·陕西高考)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:日期12345678910天气晴雨阴阴阴雨阴晴晴晴日期11121314151617181920天气阴晴晴晴晴晴阴雨阴阴日期21222324252627282930天气晴阴晴晴晴阴晴晴晴雨(1)在4月份任取一天,估计西安市在该天不下雨...的概率;(2)西安市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不下雨...的概率.【解】(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为2630=1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78.以频率估计概率,运动会期间不下雨的概率为78.18.(本小题满分12分)对某班一次测验成绩进行统计,如下表所示:分数段[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]概率0.020.040.170.360.250.15(1)求该班成绩在[80,100]内的概率;(2)求该班成绩在[60,100]内的概率.【解】记该班的测试成绩在[60,70),[70,80),[80,90),[90,100]内依次为事件A,B,C,D,由题意知事件A,B,C,D是彼此互斥的.(1)该班成绩在[80,100]内的概率是P(C∪D)=P(C)+P(D)=0.25+0.15=0.4.(2)该班成绩在[60,100]内的概率是P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.17+0.36+0.25+0.15=0.93.19.(本小题满分12分)小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?(2)规定:若x+y≥10,则小王赢;若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.【导学号:28750072】【解】(1)由于x,y取值为1,2,3,4,5,6,则以(x,y)为坐标的点有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个,即以(x,y)为坐标的点共有36个.(2)满足x+y≥10的点有:(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个,所以小王赢的概率是636=16,满足x+y≤4的点有:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个,所以小李赢的概率是636=16,则小王赢的概率等于小李赢的概率,所以这个游戏规则公平.20.(本小题满分12分)(2014·天津高考)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学ABC女同学XYZ现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.【解】(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=615=25.21.(本小题满分12分)(2014·四川高考)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;
本文标题:高中数学人教A版必修三章末综合测评3Word版含答案
链接地址:https://www.777doc.com/doc-5782447 .html