您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学人教A版选修12课时跟踪检测四演绎推理Word版含解析
课时跟踪检测(四)演绎推理一、选择题1.给出下面一段演绎推理:有理数是真分数,……………………………大前提整数是有理数,……………………………小前提整数是真分数.……………………………结论结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:选A推理形式没有错误,小前提也没有错误,大前提错误.举反例,如2是有理数,但不是真分数.2.“所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于()A.演绎推理B.类比推理C.合情推理D.归纳推理解析:选A是由一般到特殊的推理,故是演绎推理.3.下面几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°B.某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数超过50人C.由三角形的性质,推测四面体的性质D.在数列{an}中,a1=1,an=12an-1+1an-1(n≥2),由此归纳出an的通项公式解析:选AB项是归纳推理,C项是类比推理,D项是归纳推理.4.“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等.”补充以上推理的大前提()A.正方形都是对角线相等的四边形B.矩形都是对角线相等的四边形C.等腰梯形都是对角线相等的四边形D.矩形都是对边平行且相等的四边形解析:选B推理的大前提应该是矩形的对角线相等,表达此含义的选项为B.5.有一段演绎推理是这样的:直线平行于平面,则直线平行于平面内所有直线;已知直线b⊄平面α,直线a⊂平面α,直线b∥平面α,则直线b∥直线a.结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:选A大前提是错误的,直线平行于平面,则不一定平行于平面内所有直线,还有异面直线的情况.二、填空题6.若有一段演绎推理:“大前提:整数是自然数.小前提:-3是整数.结论:-3是自然数.”这个推理显然错误,则推理错误的是________(填“大前提”“小前提”或“结论”).解析:整数不全是自然数,还有零与负整数,故大前提错误.答案:大前提7.已知推理:“因为△ABC的三边长依次为3,4,5,所以△ABC是直角三角形.”若将其恢复成完整的三段论,则大前提是____________________.解析:大前提:一条边的平方等于其他两条边的平方和的三角形是直角三角形.小前提:△ABC的三边长依次为3,4,5,满足32+42=52.结论:△ABC是直角三角形.答案:一条边的平方等于其他两条边的平方和的三角形是直角三角形8.若不等式ax2+2ax+2<0的解集为空集,则实数a的取值范围为________.解析:①a=0时,有2<0,显然此不等式解集为∅.②a≠0时需有a>0,Δ≤0⇒a>0,4a2-8a≤0⇒a>0,0≤a≤2,所以0<a≤2.综上可知,实数a的取值范围是[0,2].答案:[0,2]三、解答题9.如图,在直四棱柱ABCDA1B1C1D1中,底面是正方形,E,F,G分别是棱B1B,D1D,DA的中点.求证:(1)平面AD1E∥平面BGF;(2)D1E⊥AC.证明:(1)∵E,F分别是B1B和D1D的中点,∴D1F綊BE,∴四边形BED1F是平行四边形,∴D1E∥BF.又∵D1E⊄平面BGF,BF⊂平面BGF,∴D1E∥平面BGF.∵F,G分别是D1D和DA的中点,∴FG是△DAD1的中位线,∴FG∥AD1.又∵AD1⊄平面BGF,FG⊂平面BGF,∴AD1∥平面BGF.又∵AD1∩D1E=D1,∴平面AD1E∥平面BGF.(2)连接BD,B1D1,∵底面ABCD是正方形,∴AC⊥BD.∵D1D⊥AC,BD∩D1D=D,∴AC⊥平面BDD1B1.∵D1E⊂平面BDD1B1,∴D1E⊥AC.10.在数列{}an中,a1=2,an+1=4an-3n+1,n∈N*.(1)证明数列{}an-n是等比数列.(2)求数列{}an的前n项和Sn.(3)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.解:(1)证明:因为an+1=4an-3n+1,所以an+1-(n+1)=4(an-n),n∈N*.又a1-1=1,所以数列{}an-n是首项为1,且公比为4的等比数列.(2)由(1)可知an-n=4n-1,于是数列{}an的通项公式为an=4n-1+n.所以数列{}an的前n项和Sn=4n-13+nn+12.(3)证明:对任意的n∈N*,Sn+1-4Sn=4n+1-13+n+1n+22-44n-13+nn+12=-12(3n2+n-4)≤0.所以不等式Sn+1≤4Sn,对任意n∈N*皆成立.
本文标题:高中数学人教A版选修12课时跟踪检测四演绎推理Word版含解析
链接地址:https://www.777doc.com/doc-5782663 .html