您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高二数学上期末考试模拟试题文
学而思教育·学习改变命运思考成就未来!高考网学而思教育·学习改变命运思考成就未来!高考网高二上期末考试模拟试题三(文)数学(测试时间:120分钟满分150分)一.选择题(12×5分=60分,每小题给出的四个选项中,只有一项是符合题目要求的,将正确结论的代号填入后面的表中)题号123456789101112答案1.抛物线x=-2y2的准线方程是().A.21yB.21yC.81xD.81x2.两直线2x–y+k=0与4x–2y+1=0的位置关系为().A.平行B.垂直C.相交但不垂直D.平行或重合3.不等式21xx≤0的解集是().A.{x│≤2}B.{x│1<x≤2=C.{x│1≤x≤2}D.{x│1≤x<2=4.圆22(1)1xy的圆心到直线33yx的距离是().A.12B.32C.1D.35.已知a、b、c∈R,那么下列命题正确的是().A.a>bac2>bc2B.bacbcaC.33110abababD.22110ababab6.若直线l的斜率k满足|k|≤1,则直线l的倾斜角的取值范围是().A.43,4B.4,0,43C.0,4D.43,22,47.若A是定直线l外的一定点,则过A且与l相切圆的圆心轨迹是().A.圆B.抛物线C.椭圆D.双曲线一支学而思教育·学习改变命运思考成就未来!高考网学而思教育·学习改变命运思考成就未来!高考网.曲线y=13x3-x2+5在x=1处的切线的倾斜角是().A.6B.3C.4D.349.已知点P(x,y)在不等式组20,10,220xyxy表示的平面区域上运动,则z=x-y的取值范围是().A.[-2,-1]B.[-2,1]C.[-1,2]D.[1,2]10.设0<a<21,则下列不等式成立的是().A.aaaa11111122B.aaaa11111122C.22111111aaaaD.22111111aaaa11.若双曲线222141xymm的焦点在y轴上,则m的取值范围是().A.(-2,2)B.(1,2)C.(-2,-1)D.(-1,2)12.已知椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现有一水平放置的椭圆形台球盘,其长轴长为2a,焦距为2c,若点A,B是它的焦点,当静放在点A的小球(不计大小),从点A沿直线出发,经椭圆壁反弹后再回到点A时,小球经过的路程是().A.4aB.2(a-b)C.2(a+c)D.不能惟一确定二、填空题:本大题共4个小题,每小题4分,共16分.把答案直接填在题中横线上.13.用“”或“”填空:如果0ab1,n∈N*,那么1na______1nb_______1.14.已知函数22318(224()8(2)2xxxxfxxxx当时),当时,则2lim()xfx的值是_________.15.两圆x2+y2=3与2cos,2sinxy的位置关系是_________.16.给出下列四个命题:①两平行直线0123yx和0246yx间的距离是13132;②方程11422tytx不可能表示圆;③若双曲线1422kyx的离心率为e,且21e,则k的取值范围是20,60k;④曲线0992233xyyxyx关于原点对称.其中所有正确命题的序号是_____________.学而思教育·学习改变命运思考成就未来!高考网学而思教育·学习改变命运思考成就未来!高考网三、解答题:本大题共6个小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分12分)(Ⅰ)比较下列两组实数的大小:①2-1与2-3;②2-3与6-5;(Ⅱ)类比以上结论,写出一个更具一般意义的结论,并给以证明.18.(本小题满分12分)已知直线l过点M(0,1),且l被两已知直线l1:x-3y+10=0和l2:2x+y-8=0所截得的线段恰好被M所平分,求直线l方程.]19.(本小题满分12分)已知圆C经过点A(2,-3)和B(-2,-5).(Ⅰ)当圆C的面积最小时,求圆C的方程;(Ⅱ)若圆C的圆心在直线x-2y-3=0上,求圆C的方程.20.(本小题满分12分)已知抛物线的顶点在原点,它的准线经过双曲线12222byax的左焦点,且与x轴垂直,此抛物线与双曲线交于点(6,23),求此抛物线与双曲线的方程.21.(本小题满分12分)已知实数a>0,解关于x的不等式3)1(xxa>1.22.(本小题满分14分)如图,已知△OFQ的面积为S,且OF·FQ=1,(Ⅰ)若S满足条件21S2,求向量OF与FQ的夹角θ的取值范围;(Ⅱ)设|OF|=c(c≥2),S=43c,若以O为中心,F为焦点的椭圆经过点Q,当|OQ|取得最小值时,求此椭圆的方程.学而思教育·学习改变命运思考成就未来!高考网学而思教育·学习改变命运思考成就未来!高考网数学试题参考答案及评分意见一、选择题:每小题5分,共60分.1-5.DDBAC;6-10.BBDCA;11-12.CD.二、填空题:每小题4分,共16分.13.,;14.理科:54,文科:11;15.理科:相离,文科:2;16.①,④.三、解答题:每小题5分,共60分.17.(Ⅰ)①(2+3)2-(2+1)2=26-4>0.故2+3>2+1,即2-1>2-3.··········································4分②(2+5)2-(6+3)2=45-218=220-218>0.故2+5>6+3,即2-3>6-5.7分(Ⅱ)一般结论:若n是正整数,则1n-n>3n-2n.·····10分证明:与(Ⅰ)类似(从略).·····························································12分18.过点M与x轴垂直的直线显然不合要求,故可设所求直线方程为y=kx+1,·····························································································2分若此直线与两已知直线分别交于A、B两点,则解方程组可得xA=137k,xB=27k.······························································6分由题意137k+27k=0,∴k=-41.10分故所求直线方程为x+4y-4=0.···················································12分另解一:设所求直线方程y=kx+1,代入方程(x-3y+10)(2x+y-8)=0,得(2-5k-3k2)x2+(28k+7)x-49=0.由xA+xB=-2352728kkk=2xM=0,解得k=-41.∴直线方程为x+4y-4=0.另解二:∵点B在直线2x-y-8=0上,故可设B(t,8-2t),由中点公式得A(-t,2t-6).∵点A在直线x-3y+10=0上,∴(-t)-3(2t-6)+10=0,得t=4.∴B(4,0).故直线方程为x+4y-4=0.19.理科:(Ⅰ)要使圆的面积最小,则AB为圆的直径,∴所求圆的方程为(x-2)(x+2)+(y+3)(y+5)=0,即x2+(y+4)2=5.··········································································5分(Ⅱ)因为kAB=12,AB中点为(0,-4),所以AB中垂线方程为y+4=-2x,即2x+y+4=0.·························8分学而思教育·学习改变命运思考成就未来!高考网学而思教育·学习改变命运思考成就未来!高考网解方程组,032,042yxyx得.2,1yx即圆心为(-1,-2).根据两点间的距离公式,得半径r=10,因此,所求的圆的方程为(x+1)2+(y+2)2=10.································12分另解:设所求圆的方程为(x-a)2+(y-b)2=r2,根据已知条件得032)5()2()3()2(222222barbarba.10,2,12rba所以所求圆的方程为(x+1)2+(y+2)2=10.文科:解:由2,250,yxxy得交点(1,2),即所求圆的圆心为)2,1(.···············5分设所求的方程为222)2()1(ryx,··········································7分则534|352314|22r,故圆的方程为22(1)(2)25xy.···············································12分20.由题意可知抛物线的焦点到准线间的距离为2C(即双曲线的焦距).设抛物线的方程为24.ycx4分∵抛物线过点2233(,6)641122ccab即①又知2222223()(6)962114abab②8分由①②可得2213,44ab,10分∴所求抛物线的方程为xy42,双曲线的方程为224413xy.·········12分21.理科:原不等式化为(Ⅰ)3,(1)3,xaxx或(Ⅱ)3,(1)3.xaxx即(Ⅰ)3,(1)3xaxa或(Ⅱ)3,(1)3.xaxa···································4分(1)当0<a<1时,对于(Ⅰ)有3,31xaxa3<x<13aa;对于(Ⅱ)有3,31xaxax∈.∴当0<a<1时,解集为{x|3<x<13aa}.·····································8分(2)当a=1时,解集为{x|x>3}.10分(3)当a>1时,解(Ⅰ)得x>3,(Ⅱ)得x<13aa,此时解集为{x|x>3或x<13aa}.··················································12分学而思教育·学习改变命运思考成就未来!高考网学而思教育·学习改变命运思考成就未来!高考网文科:原不等可化为2()()0xaxa.3分又)1(2aaaa,故①当0a或1a时,2aa.则2axa;································6分②当10a时,aa2.则axa2;······································8分③当0a或1a时,不等式为02x或0)1(2x,此时无解.········10分综上:当0a或1a时,2aa.则不等式的解集是}|{2axax;当10a时,aa2.则不等式的解集是}|{2axax;当0a或1a时,不等
本文标题:高二数学上期末考试模拟试题文
链接地址:https://www.777doc.com/doc-5785024 .html