您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 黑龙江省大庆铁人中学20122013学年高二数学下学期期末考试试题理新人教A版高中数学练习试
1高二下学期期末考试数学(理)试题选择题(每题5分,共60分)1.复数2)11(i的值是A.i2B.i2C.2D.22.设随机变量的分布列如表所示且Eξ=1.6,则a-b=ξ0123P0.1ab0.1A.0.2B.0.1C.-0.2D.-0.43.已知一组观测值具有线性相关关系,若对于ybxa,求得0.62.53.6bxy,,,则线性回归方程是A.0.62.1yxB.2.10.6yxC.0.62.1yxD.2.10.6yx4.为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下图:加密密钥密码发送解密密钥密码明文密文密文明文现在加密密钥为y=loga(x+2),如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.问:若接受方接到密文为“4”,则解密后得到明文为A.12B.13C.14D.155.某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法有A.474种B.77种C.462种D.79种6.用数学归纳法证明)1(12131211nNnnn且,第二步证明从“k到k+1”,左端增加的项数是A.12kB.12kC.k2D.12k7.抛掷两个骰子,至少有一个4点或5点出现时,就说这次实验成功,则在10次实验中,成功次数ξ的期望是()A.809B.559C.509D.1038.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A.抽签法B.随机数法C.系统抽样法D.分层抽样法9.观察下列恒等式:2∵22tan12(1tan)tan2tan∴tanα-1tanα=-2tan2α①∴tan2α-1tan2α=-2tan4α②tan4α-1tan4α=-2tan8α③由此可知:tanπ32+2tanπ16+4tanπ8-1tanπ32=()A.-2B.-4C.-6D.-810.右面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的概率为A.52B.107C.54D.10911.设1z是虚数,1121zzz是实数,且112z,则1z的实部取值范围是()A.1,1B.21,21C.2,2D.21,00,2112.设函数61,00.,(),xxfxxxx,则当x0时,[()]ffx表达式的展开式中常数项为A.-20B.20C.-15D.15二、填空题(每题5分,共20分)13.二项式5()xy的展开式中,含23xy的项的系数是.(用数字作答)14.随机变量X服从正态分布N(0,1),如果P(X<1)=0.8413,则P(-1<X<0)=.15.连续掷两次骰子,以先后得到的点数nm,作为点),(nmP的坐标,那么点P落在圆1722yx外部的概率为甲89980123379乙3179201530第17题图16.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第5个图案中有白色地面砖块.三、解答题(共70分)17(10分)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为(2,)4,直线的极坐标方程为cos()4a,且点A在直线上.(1)求a的值及直线的直角坐标方程;(2)圆c的参数方程为1cossinxy,(为参数),试判断直线与圆的位置关系.18.(12分)按照下列要求,分别求有多少种不同的方法?(1)6个不同的小球放入4个不同的盒子;(2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球;(4)6个不同的小球放入4个不同的盒子,恰有1个空盒.19.(12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ)根据茎叶图计算样本均值;(Ⅱ)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.420.(12分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,XY,求3X的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?21.(12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?5附表:22.(12分)在直角坐标系xOy中,直线l的参数方程为cos1sinxtyt(t为参数,0≤απ).以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρcos2θ=4sinθ.(1)求直线l与曲线C的平面直角坐标方程;(2)设直线l与曲线C交于不同的两点A、B,若||8AB,求α的值.6参考答案一、选择题BCCCACCDDCBA二、填空题三、解答题(共70分)20.解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3X”的事件为A,则A事件的对立事件为“5X”,7224(5)3515PX,11()1(5)15PAPX这两人的累计得分3X的概率为1115.……………6分(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X,都选择方案乙抽奖中奖的次数为2X,则这两人选择方案甲抽奖累计得分的数学期望为1(2)EX,选择方案乙抽奖累计得分的数学期望为2(3)EX由已知:12~(2,)3XB,22~(2,)5XB124()233EX,224()255EX118(2)2()3EXEX,2212(3)3()5EXEX12(2)(3)EXEX他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.……………12分(Ⅱ)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手600.2515(人),“25周岁以下组”中的生产能手400.37515(人),据此可得22列联表如下:生产能手非生产能手合计25周岁以上组15456025周岁以下组152540合计3070100所以得:222()100(15251545)251.79()()()()6040307014nadbcKabcdacbd8因为1.792.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”…………12分
本文标题:黑龙江省大庆铁人中学20122013学年高二数学下学期期末考试试题理新人教A版高中数学练习试
链接地址:https://www.777doc.com/doc-5786866 .html