您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 广告经营 > 如何在课堂教学中有效渗透数学思想方法
如何在课堂教学中有效渗透数学思想方法数学思想对我们认识、分析和解决问题有非常重要的作用,它告诉我们怎样思考,从什么角度去思考。数学思想是数学内容价值的核心体现,是一种观念形态的策略创造,它指引人们如何用数学的眼光、数学的方法去透视事物,提出概念,解决问题。同时,它又能培养人们的抽象思维能力、逻辑推理能力和数学应用能力,进而激发灵感,诱发创造。只有将数学思想同具体的知识相结合,用具体的知识来分析和解决问题,数学思想才能发挥其在认识论、方法论上的价值。因此,在进行具体的知识教学时,要将思想方法渗透其中。让学生在理解和运用数学知识的同时,领悟和使用体会数学思想。下面就数学数形结合思想、化归的思想、分类的思想浅谈自己在教学中的实践。一、数形结合思想方法在教学中的应用。在“数与式”这一部分,经常会遇到一些探索规律题,在教学中图形规律题的探索也是常见一种形式,遇到这一类问题,我们必须学会分析图形位置序号与图形本身一种联系,将几何图形变化情况进行数字化、代数化,这就是“以数解形”。例如:如图,用火柴棒按以下方式搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根,……,则搭n条小鱼需要多少根火柴棒。(用含n的代数式表示)分析:第①个图形,8根第②个图形,8+6=1+6×1第③个图形,8+6+6=1+6×2第n个图形,8+6(n-1)=6n+2图形规律探索题,重在考查学生的观察、分析、归纳的能力,要使学生具备这些能力,需要教师在平常教学中多引导。教学中引导学生观察分析各个图形之间变化情况是其一,另一点是此类问题还要懂得将图形变化情况数字化,找到数字与序号间一种隐性关系,从而将一个在不断变化中几何图形代数化,达到精化解题目的。二、化归的思想方法在教学中的应用。所谓化归思想,就是把问题转化为能用现成方法解决的思想方法,一般是将复杂问题转化为简单问题。通过旧的定理或方法证明得到新的结论,其实也是一种化归思想。例如:解方程x32=11x在方程两边同时乘最简公分母3x(x+1),得2(x+1)=3x,从而解得x=2,经检验x=2是原方程的解。本例通过去分母将分式方程转化成2(x+1)=3x的一元一次方程,从而解决了问题,这实质就是化归思想的一种体现。再如三角形全等的证明公理“角边角”去证明了“角角边”的正确性,从而得到一种新的证明三角形的方法,也充分体现了化归的思想。三、分类的思想方法在教学中的应用。根据研究对象的本质属性的差异,将所研究的问题分为不同种类的思想叫做分类思想,其作用是克服思维的片面性,防止漏解,另外分类时要满足不重复,无遗漏的原则。分类思想,贯穿于整个数学教学的内容中,当知识积累到一定的程度就需要适时分类、归纳的思想来帮助学生建构自己的知识网络。例如:等腰三角形ΔABC中,∠A=150゜,求∠B的度数。[讲析]本题要分∠A是底角还是顶角来讨论。若∠A是顶角,则∠B为底角,∠B=65゜。若∠A是底角,又要分∠B是底角和顶角两种情况。所以∠B=50゜或∠B=80゜。综上,∠B=65゜或50゜或80゜。本题在分成两大类讨论时,其中一类又再分成两类进行讨论。在分类讨论思想的过程中,首要是分类,教师要培养学生分类意识,然后才能引导学生在分类的基础上进行讨论,比如在研究相反数、绝对值,都是按有理数分成正数、负数、零三类分别研究;在研究加减乘除四种运算法则时,也是按同号、异号与零运算这三类分别研究,在几何教学中,用分类讨论进行了角的分类,点和直线的位置关系,两条直线位置关系的分类;渗透分类讨论的思想方法,对培养学生全面观察事物,灵活处理问题的能力有积极促进作用。数学知识的学习要听讲、复习、做练习等过程才能掌握与巩固。数学思想方法的形成同样要有一个循序渐进的过程并经过反复训练才能使学生真正领悟,也只有经过一个反复训练,不断完善的过程才能使学生形成直觉的运用数学思想方法的意识,建立起学生自我的“数学思想方法系统”。只有这样学生才能学的轻松、有条理、扎实,适应未来的发展和需要。
本文标题:如何在课堂教学中有效渗透数学思想方法
链接地址:https://www.777doc.com/doc-5827548 .html