您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 26.1.3(3)_二次函数y=a(x-h)2+k的图象
知识剖析26.1.3二次函数y=a(x-h)+k图像(3)2——二次函数y=a(x-h)+k图像2学习目标1.使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。2.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。指导自学认真看课本P9练习前的内容:画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较?5分钟后,比谁能正确地做出与例题类似的习题。1.指出下列函数图象的开口方向对称轴和顶点坐标及最值:•3.对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?211.y=2x+3-,2212.y=-x+1-5.32.(1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?(2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?1.指出下列函数图象的开口方向,对称轴和顶点坐标.必要时作出草图进行验证.2.填写下表:y=a(x-h)²+k开口方向对称轴顶点坐标a0a021.235;yx22.0.51;yx233.1;4yx24.225;yx25.0.542;yx236.3.4yx在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象.观察图象,回答问题(1)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?23xy213xy(2)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x的增大而减少?在同一坐标系中,作出二次函数y=3x²,y=3(x-1)2和y=3(x-1)2+2的图象.根据图象回答问题:三个图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什么?2312yx对称轴仍是平行于y轴的直线x=1;增减性与y=3x2类似.顶点是(1,2).二次函数y=3(x-1)2+2的图象可以看作是抛物线y=3x2先沿着x轴向右平移1个单位,再沿直线x=1向上平移2个单位后得到的.231yx开口向上,当X=1时有最小值:且最小值=2.先猜一猜,再做一做,在同一坐标系中作二次函数y=3(x-1)2-2,会是什么样?23xyX=1对称轴仍是平行于y轴的直线(x=1);增减性与y=3x2类似.顶点是(1,-2)二次函数y=3(x-1)2-2的图象可以看作是抛物线y=3x2先沿着x轴向右平移1个单位,再沿直线x=1向下平移2个单位后得到的.二次函数y=3(x-1)2-2的图象与抛物线y=3x2和y=3(x-1)2有何关系?它的开口方向、对称轴和顶点坐标分别是什么?开口向上,当x=1时y有最小值:且最小值=-2.二次函数y=-3(x-1)2+2和y=-3(x-1)2,y=-3x²的图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什么?再作图看一看.X=123xy213xy2132xy在同一坐标系中,作出二次函数y=-3(x-1)2+2,y=-3(x-1)2-2,y=-3x²和y=-3(x-1)2的图象。根据图像回答问题对称轴仍是平行于y轴的直线(x=1);增减性与y=-3x2类似.顶点分别是(1,2)和(1,-2).二次函数y=-3(x-1)2+2与y=-3(x-1)2+2的图象可以看作是抛物线y=-3x2先沿着x轴向右平移1个单位,再沿直线x=1向上(或向下)平移2个单位后得到的.二次函数y=-3(x-1)2+2与y=-3(x-1)2-2的图象和抛物线y=-3x²,y=-3(x-1)2有什么关系?它的开口方向,对称轴和顶点坐标分别是什么?213xy开口向下,当x=1时y有最大值;且最大值=2(或最大值=-2).2132xy想一想,二次函数y=-3(x+1)2+2与y=-3(x+1)2-2的图象和抛物线y=-3x²,y=-3(x+1)2y23xy2132xyX=1对称轴仍是平行于y轴的直线(x=-1);增减性与y=-3x2类似.顶点分别是(-1,2)和(-1,-2)..二次函数y=-3(x+1)2+2与y=-3(x+1)2-2的图象可以看作是抛物线y=-3x2先沿着x轴向左平移1个单位,再沿直线x=-1向上(或向下)平移2个单位后得到的.二次函数y=-3(x+1)2+2与y=-3(x+1)2-2的图象和抛物线y=-3x²,y=-3(x+1)2有什么关系?它的开口方向,对称轴和顶点坐标分别是什么?213xy开口向下,当x=-1时y有最大值:且最大值=2(或最大值=-2).2132xy先想一想,再总结二次函数y=a(x-h)2+k的图象和性质.23xy2132xyx=1•一般地,由y=ax²的图象便可得到二次函数y=a(x-h)²+k的图象:y=a(x-h)²+k(a≠0)的图象可以看成y=ax²的图象先沿x轴整体左(右)平移|h|个单位(当h0时,向右平移;当h0时,向左平移),再沿对称轴整体上(下)平移|k|个单位(当k0时,向上平移;当k0时,向下平移)得到的.•因此,二次函数y=a(x-h)²+k的图象是一条抛物线,它的开口方向、对称轴和顶点坐标与a,h,k的值有关.归纳用平移观点看函数:抛物线与抛物线形状相同,位置不同.2()yaxhk2yax二次函数特点:归纳khxay2)(1.图象是一条抛物线,对称轴为直线x=h,顶点为(h,k)。2.当a0时,开口向上;当x=h时,y取最小值为k;在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大.3.当a0时,开口向下;当x=h时,y取最大值为k;在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.二次函数y=a(x-h)2+k的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=a(x-h)2+k(a0)y=a(x-h)2+k(a0)(h,k)(h,k)直线x=h直线x=h由h和k的符号确定由h和k的符号确定向上向下当x=h时,最小值为k.当x=h时,最大值为k.在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:2.不同点:只是位置不同(1)顶点不同:分别是(h,k)和(0,0).(2)对称轴不同:分别是直线x=h和y轴.(3)最值不同:分别是k和0.3.联系:y=a(x-h)²+k(a≠0)的图象可以看成y=ax²的图象先沿x轴整体左(右)平移|h|个单位(当h0时,向右平移;当h0时,向左平移),再沿对称轴整体上(下)平移|k|个单位(当k0时向上平移;当k0时,向下平移)得到的.1.相同点:(1)形状相同(图像都是抛物线,开口方向相同).(2)都是轴对称图形.(3)都有最(大或小)值.(4)a0时,开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.a0时,开口向下,在对称轴左侧,y都随x的增大而增大,在对称轴右侧,y都随x的增大而减小.二次函数y=a(x-h)²+k与y=ax²的关系
本文标题:26.1.3(3)_二次函数y=a(x-h)2+k的图象
链接地址:https://www.777doc.com/doc-5831579 .html