您好,欢迎访问三七文档
数学课例研究报告一.研究目标基本目标:通过研究体现数学课堂教学中学生学生主体作用的激发、学生参与作用的操作、学生能力培养方面的发挥、教学策略多样化、教学模式系列化的课堂教学实例及理论成果。衍生目标:在研究中,通过课例实践,让学生在“做中学”,激发和增强对学习数学的兴趣,体验自主学习与探究思考的过程,发现和掌握数学学习方法,建构自己的数学知识体系,发展自己的数学思维,感悟数学之美,提高数学学习水平。二、课题研究的内容与方法(一)研究的内容课例研究,是最基础的教学实践研究,从课例中,我们可以观察到的教与学实践过程要素是:●关于教师的教:A、教学设计的适切性(包涵信息技术应用的适切性)B、教学过程的生成性(教学机智)C、教学评价的有效性关于学生的学:A、学习的准备B、学习的注意程度C、数学思维的深度、广度、灵活性D、知识巩固能力●关于信息技术与数学课程整合的过程:构建有效教学过程,促进学生意义建构因此,我们的研究内容主要包括对课例的系统分析、总结和课例要素的观察分析。(二)研究的方法本课题主要采用行动研究法。以信息技术与初中数学课程整合的研究为载体,把探索研究结果与运用研究成果结合起来,边设计边实施,边实施边修正,边修正边反思,促进课题研究的深入。重点初中各年级的教材内容为主,选择一些突破口。选择若干个点分析其理论基础、内容特点、技术特征、学生的学习方式、学习结果及学生的个性发展等进行研究。课例研究的流程包括五个步骤:(1)课前分析(教学内容分析、学生分析);(2)教学设计;(3)课堂教学观察;(4)教学反思;(5)教学过程建模。三、研究的过程第一阶段:行动序曲初步的个人备课和准备阶段:1.研讨课例研究目标的构建与课例内容的确立,形成课例的初步研究方案。2.制定和申报课例研究方案,成立课例研究组。第二阶段:实践探索:1.开展课例研究工作,确定有关研究课的内容,注重集体研讨。2搜集、整理内容,以便有计划、有系统地进行研究。3.有实验教师讲课,研究小组听课、评课,形成一定的教学模式。第三:课后反思第四阶段:全面总结课题研究工作,撰写集体备课笔记四:课例研修报告:课例名称:1、一元二次方程教师:王伟课时数:一课时课型:新授课一元二次方程4.分解因式法一、学生知识状况分析学生的知识技能基础:在前几册学生已经学习了一元一次方程、二元一次方程组、可化为一元一次方程的分式方程等,初步感受了方程的模型作用,并积累了解一元一次方程的方法,熟练掌握了解一元一次方程的步骤;在八年级学生学习了分解因式,掌握了提公因式法及运用公式法(平方差、完全平方)熟练的分解因式;在本章前几节课中又学习了配方法及公式法解一元二次方程,掌握了这两种方法的解题思路及步骤。学生活动经验基础:在相关知识的学习过程中,学生已经经历了用配方法和公式法求一元二次方程的解的过程,并在现实情景中加以应用,切实提高了应用意识和能力,也感受到了解一元二次方程的必要性和作用;同时在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。二、教学任务分析教科书基于用分解因式法解一元二次方程是解决特殊问题的一种简便、特殊的方法的基础之上,提出了本课的具体学习任务:能根据已有的分解因式知识解决形如“x(x-a)=0”和“x2-a2=0”的特殊一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。数学教学由一系列相互联系而又渐次递进的课堂组成,因而具体的课堂教学也应满足于远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《分解因式法》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“经历由具体问题抽象出一元二次方程的过程,体会方程是刻画现实世界中数量关系的一个有效数学模型,并在解一元二次方程的过程中体会转化的数学思想,进一步培养学生分析问题、解决问题的意识和能力。”同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:教学目标1、能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性;2、会用分解因式法(提公因式法、公式法)解决某些简单的数字系数的一元二次方程;3、通过分解因式法的学习,培养学生分析问题、解决问题的能力,并体会转化的思想。4、通过小组合作交流,尝试在解方程过程中,多角度地思考问题,寻求从不同角度解决问题的方法,并初步学会不同方法之间的差异,学会在与他人的交流中获益。三、教学过程分析本节课设计了七个教学环节:第一环节:复习回顾;第二环节:情境引入,探究新知;第三环节:例题解析;第四环节:巩固练习;第五环节:拓展延伸;第六环节:感悟与收获;第七环节:布置作业。第一环节:复习回顾内容:1、用配方法解一元二次方程的关键是将方程转化为(x+m)2=n(n≥0)的形式。2、用公式法解一元二次方程应先将方程化为一般形式。3、选择合适的方法解下列方程:①x2-6x=7②3x2+8x-3=0目的:以问题串的形式引导学生思考,回忆两种解一元二次方程的方法,有利于学生衔接前后知识,形成清晰的知识脉络,为学生后面的学习作好铺垫。实际效果:第一问题学生先动笔写在练习本上,有个别同学少了条件“n≥0”。第二问题由于较简单,学生很快回答出来。第三问题由学生独立完成,通过练习学生复习了配方法及公式法,并能灵活应用,提高了学生自信心。第二环节:情景引入、探究新知内容:1、师:有一道题难住了我,想请同学们帮助一下,行不行?生:齐答行。师:出示问题,一个数的平方与这个数的3倍有可能相等吗?如果能,这个数是几?你是怎样求出来的?说明:学生独自完成,教师巡视指导,选择不同答案准备展示。附:学生A:设这个数为x,根据题意,可列方程x2=3x∴x2-3x=0∵a=1,b=-3,c=0∴b2-4ac=9∴x1=0,x2=3∴这个数是0或3。学生B::设这个数为x,根据题意,可列方程x2=3x∴x2-3x=0x2-3x+(3/2)2=(3/2)2(x-3/2)2=9/4∴x-3/2=3/2或x-3/2=-3/2∴x1=3,x2=0∴这个数是0或3。学生C::设这个数为x,根据题意,可列方程x2=3x∴x2-3x=0即x(x-3)=0∴x=0或x-3=0∴x1=0,x2=3∴这个数是0或3。学生D:设这个数为x,根据题意,可列方程x2=3x两边同时约去x,得∴x=3∴这个数是3。2、师:同学们在下面用了多种方法解决此问题,观察以上四个同学的做法是否存在问题?你认为那种方法更合适?为什么?说明:小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的参与情况。超越小组:我们认为D小组的做法不正确,因为要两边同时约去X,必须确保X不等于0,但题目中没有说明。虽然我们组没有人用C同学的做法,但我们一致认为C同学的做法最好,这样做简单又准确.学生E:补充一点,刚才讲X须确保不等于0,而此题恰好X=0,所以不能约去,否则丢根.师:这两位同学的回答条理清楚并且叙述严密,相信下面同学的回答会一个比一个棒!(及时评价鼓励,激发学生的学习热情)3、师:现在请C同学为大家说说他的想法好不好?生:齐答好学生C:X(X-3)=0所以X1=0或X2=3因为我想3×0=0,0×(-3)=0,0×0=0反过来,如果ab=0,那么a=0或b=0,所以a与b至少有一个等于04、师:好,这时我们可这样表示:如果a×b=0,那么a=0或b=0这就是说:当一个一元二次方程降为两个一元一次方程时,这两个一元一次方程中用的是“或”,而不用“且”。所以由x(x-3)=0得到x=0和x-3=0时,中间应写上“或”字。我们再来看c同学解方程x2=3x的方法,他是把方程的一边变为0,而另一边可以分解成两个因式的乘积,然后利用a×b=0,则a=0或b=0,把一元二次方程变成一元一次方程,从而求出方程的解。我们把这种解一元二次方程的方法称为分解因式法,即当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我门就采用分解因式法来解一元二次方程。目的:通过独立思考,小组协作交流,力求使学生根据方程的具体特征,灵活选取适当的解法.在操作活动过程中,培养学生积极的情感,态度,提高学生自主学习和思考的能力,让学生尽可能自己探索新知,教师要关注每一位学生的发展.问题3和4进一步点明了分解因式的理论根据及实质,教师总结了本节课的重点.实际效果:对于问题1学生能根据自己的理解选择一定的方法解决,速度比较快。第2问让学生合作解决,学生在交流中产生了不同的看法,经过讨论探究进一步了解了分解因式法解一元二次方程是一种更特殊、简单的方法。C同学对于第3问的回答从特殊到一般讲解透彻,学生语言学生更容易理解。问题4的解决很自然地探究了新知——分解因式法.并且也点明了运用分解因式法解一元二次方程的关键:将方程左边化为因式乘积,右边化为0,这为后面的解题做了铺垫。说明:如果ab=0,那么a=0或b=0,“或”是“二者中至少有一个成立”的意思,包括两种情况,二者同时成立;二者有一个成立。“且”是“二者同时成立”的意思。第三环节例题解析内容:解下列方程(1)、5X2=4X(仿照引例学生自行解决)(2)、X-2=X(X-2)(师生共同解决)(3)、(X+1)2-25=0(师生共同解决)学生G:解方程(1)时,先把它化为一般形式,然后再分解因式求解。解:(1)原方程可变形为5X2-4X=0∴X(5X-4)=0∴X=0或5X-4=0∴X1=0,X2=4/5学生H:解方程(2)时因为方程的左、右两边都有(x-2),所以我把(x-2)看作整体,然后移项,再分解因式求解。解:(2)原方程可变形为(X-2)-X(X-2)=0∴(X-2)(1-X)=0∴X-2=0或1-X=0∴X1=2,X2=1学生K:老师,解方程(2)时能否将原方程展开后再求解师:能呀,只不过这样的话会复杂一些,不如把(x-2)当作整体简便。学生M:方程(x+1)2-25=0的右边是0,左边(x+1)2-25可以把(x+1)看做整体,这样左边就是一个平方差,利用平方差公式即可分解因式。解:(3)原方程可变形为[(X+1)+5][(X+1)-5]=0∴(X+6)(X-4)=0∴X+6=0或X-4=0∴X1=-6,X2=4师:好﹗这个题实际上我们在前几节课时解过,当时我们用的是开平方法,现在用的是因式分解法。由此可知:一个一元二次方程的解法可能有多种,我们在选用时,以简便为主。问题:1、用这种方法解一元二次方程的思路是什么?步骤是什么?(小组合作交流)2、对于以上三道题你是否还有其他方法来解?(课下交流完成)目的:例题讲解中,第一题学生独自完成,考察了学生对引例的掌握情况,便于及时反馈。第2、3题体现了师生互动共同合作,进一步规范解题步骤,最后提出两个问题。问题1进一步巩固分解因式法定义及解题步骤,而问题2体现了解题的多样化。实际效果:对于例题中(1)学生做得很迅速,正确率比较高;(2)、(3)题经过探究合作最终顺利的完成,所以学生情绪高涨,讨论热烈,思维活跃,正是因为这,问题1、2学生们有见地的结论不断涌现,叙述越来越严谨。说明:在课本的基础上例题又补充了一题,目的是练习使用公式法分解因式。第四环节:巩固练习内容:1、解下列方程:(1)(X+2)(X-4)=0(2)X2-4=0(3)4X(2X+1)=3(2X+1)2、一个数平方的两倍等于这个数的7倍,求这个数?目的:华罗庚说过“学数学而不练,犹如入宝山而空返”该练习对本节知识进行巩固,使学生更好地理解所学知识并灵活运用。实际效果:此处留给学生充分的时间与空间进行独立练习,通过练习基本能用分解因式法解一元二次方程,收到了较好的效果。第五环节拓展与延伸师:想不想挑战自我?学生:想内容:1、一个小球以15m/s的初速度竖直向上弹出,它在空中的速度h(m),与时间t(s)满足关系:h=15t-5t2小球何时能落回地面?2、一元二次方程(m-1)x2+3mx+(m+4)(m-1)=0有一个根为0,求m的值说明:a学生交流
本文标题:数学课例研究报告
链接地址:https://www.777doc.com/doc-5832726 .html