您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > 图形图像 > 基于图像处理的地铁隧道裂缝识别算法研究-王耀东
35720147ChineseJournalofScientificInstrumentVol.35No.7Jul.20142014-01ReceivedDate2014-01*M14JB00020、NCET-11-0572*王耀东1,余祖俊2,白彪1,许西宁1,朱力强21.1000442.100044。、、。。。。。TP242.8A520.20ResearchonimageprocessingbasedsubwaytunnelcrackidentificationalgorithmWangYaodong1,YuZujun2,BaiBiao1,XuXining1,ZhuLiqiang21SchoolofMechanicalElectronicandControlEngineeringBeijingJiaotongUniversityBeijing100044China2.StateKeyLaboratoryofRailTrafficControlandSafetyBeijingJiaotongUniversityBeijing100044ChinaAbstractAsakindoftunneldefectscracksseriouslyaffectthesafetyofthetunnel.Itisessentialtodetecttunnelcrackseffectively.Howeverlowcontrastunevenilluminationandseverenoisepollutionexistcommonlyintunnelcrackimages.Astraditionalimagepro-cessingalgorithmscannotdetectthetunnelcracksanewalgorithmisproposedinthispapertodetectsubwaytunnelsurfacecracks.Thealgorithmutilizesthepreprocessingalgorithmcombiningglobalandlocalmethodssimultaneouslyandthemultiplestagedfilterpro-cessingbasedontheconnectedregions.Thepreprocessingalgorithmcanrestraintheinfluenceoflowcontrastandunevenillumination.Themultiple-stagedfilteringprocessingmethodbasedontheconnectedregionscaneliminatedifferenttypesofnoisesinthesubwaytun-nelimageswell.Thispaperalsoproposesanalgorithmbasedonthelocalmeanandstandarddeviationofthecracktocalculatethecrackwidth.Theexperimentresultsshowthatthisalgorithmcaneffectivelydetectandmarksubwaytunnelsurfacecrackfeatureareas.Keywordscrackdetectionimageprocessingconnectedregioncrackwidth1、、。。、、、1。、、。。2PCNN3149035245Chen“”67。。89。ART-2510Landstrm11Zhu12Oliveira213C14SIFT15。。。2。1。1Fig.1Flowchartofcrackextraction2.1、。。2。Ixy1Gxy=minIx+x'y+y'-Sx'y'|x'y'∈DS1Sx'y'DSSx'y'Gxy。。。。WH。W、H。。UixyVixy2Vixy=Uixy-minUixymaxUixy-minUixyi=12…K2K。01。Mi3Mi=1W·H∑x∑yVixy3。Lixy4λ=4。Lixy=11+MiVixyλVixy≠00Vixy={04。Qixy5。Qixy=Lixy×2555。71491。2OtsutiPxy。6。Pixy=0Qixy≤ti1Qixy>t{i62.2。。。1CkxyPxypCkxyB3。7。Zj=Zj-1B∩Pxyj=012…N7ZZ0p。Zj=Zj+1Zj。。2。。nkNnFxy。Tn8Ckxy=1nk<Tn0{k=12…Nn8nk=∑x∑yCkxy93。。FxyDkxy10Rk=∑x∑yDkxySM10SM。NRYxy。TR11Dkxy=1Rk>TR0{k=12…NR11422。YxyEkxywmaxhmax2。23。2Fig.2SpecialshapednoisesNw3Tw、ThTr12Ekxy=1wmax>Twhmax>ThRk>Tr0{12k=12…Nw。3。3。3.1。Zhang16。。01。3。3Fig.3Schematicdiagramofthinningalgorithm1492353×3P1ijP2P3…P94。12≤ZP1≤62TP1=131-P2×1-P4×1-P8=0TP1≠141-P2×1-P4×1-P6=0TP4≠1ZP1P2P3…P90TPP801。3.2。。。。3。1。。。3×33。8。。4○0×1。3×3。4Fig.4Templatesofendpointdetection2Nxy。1317。L=ANe+BNo+CNc13NeNoNc。A=1B槡=2C=0。3Tl。14Nkxy=1Lk<Tl0{k=12…NT14NT。1155。5Fig.5Blurremovingresults3.3。。2。1。2。6。2-16。6Fig.6Calculationofthenormallinesatcrackpoints71493。。。5×5。2Ixy。2。DA15A=Ix0y0Ix1y1…IxDyD…Ix2D-1y2D-1Ix2Dy2D15IxDyDxiyi。abrabprmrmμσ16、17μ=∑bm=armprm16σ=∑bm=arm-u2prm槡177ab。7Fig.7Crackwidthmeasurementpk118pk1=IxD-k1yD-k1k1=01…D18k10Dk1。pk1≤μ-σpk1+1>μ-σk1=01…D19pk220pk2=IxD+k2yD+k2k2=01…D20k20Dk2。pk2≤μ-σpk2+1>μ-σk2=01…D2121width=k1+k22248。8bMask18NDHM198c。8Fig.8CrackextractionalgorithmcomparisonMask。。。9149435。。2112.78362.4168。9Fig.9Crackwidthcalculation1。10。Mask。10cMask-NDHM。10Fig.10Crackextractionalgorithmcomparison。。。11。11。11Fig.11Crackwidthcalculation50×50Tn=300TR=0.3Tw=20Th=30Tr=0.18D15。1150。。1216。。1235。121、2、4、7。71495。12Fig.12Crackextractionresults5。。。。。1。。。1.J.20051103-106.LIX.AnalysisofthecausesofcracksintunnelliningJ.RailwayConstructionTechnology2005Suppl.1103-106.2.J.20124819163-166219.LIWZHUPZH.ImagedetectionalgorithmresearchforasphaltpavementcrackJ.ComputerEngineeringandApplication20124819163-166219.3.J.2012333637-642.ZHAOHJGEWQLIXD.Detectionofcrackdefectbasedonminimumerrorandpulsecoupledneuralnet-worksJ.ChineseJournalofScientificInstrument2012333637-642.4.J.201339176-82.WANGXMFENGXDANGJW.Pavementcrackdetec-tionmethodbasedonmulti-imageandmulti-resolutionJ.JournalofLanzhouUniversityofTechnology201339176-82.5.J.201330103121-31233132.DONGANGLIANGMM.CrackdetectionalgorithmbasedongraycorrelationJ.ApplicationresearchofComputers201330103121-31233132.6CHENCWANGJZOULetal.Anovelcrackdetec-tionalgorithmofunderwaterdamimageC.SystemsandInformaticsICSAI20121825-1828.7.J.201318169-77.XUWTANGZHMLVJY.PavementcrackdetectionbasedonimagesaliencyJ.JournalofImageandGraphics201318169-77.8.J.20123381850-1855.YANGSSHAOLTGUOXXetal.SkeletonandfractallawbasedimagerecognitionalgorithmforconcretecrackJ.ChineseJournalofScientificInstrument20123381850-1855.9.149635J.201031102260-2266.XUZHGZHAOXMSONGHSH.AsphaltpavementcrackrecognitionalgorithmbasedonhistogramestimationandshapeanalysisJ.ChineseJournalofScientificIn-strument201031102260-2266.10.ART-2J.20093071420-1425.LIUGHJIANGZHJ.RecognitionofporcelainbottlecrackbasedonmodifiedART-2networkandinvariantmomentJ.ChineseJournalofScientificInstrument20093071420-1425.11LANDSTRMATHURLEYM.Morphology-basedcrackdetectionforsteelslabsJ.IEEESignalProcess-ingSociety201211866-875.12ZHUZGERMANSBRILAKISI.Visualretrievalofconcretecrackpropertiesforautomatedpost-earthquakestructuralsafetyevaluationJ.AutomationinConstruc-tion2011207874-883.13OLIVEIRAHCORREIAPL.AutomaticRoadCrackDetectionandCharacterizationJ.IEEEIntelligentTransportationSystemsSociety20133155-168.14.FCMJ.201349431-34.SONGBBWEIN.FCM
本文标题:基于图像处理的地铁隧道裂缝识别算法研究-王耀东
链接地址:https://www.777doc.com/doc-5864404 .html