您好,欢迎访问三七文档
苏科版数学全部概念七上第二章有理数整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。任何一个有理数都可以在数轴上表示。无限不循环小数和开平方开不尽的数叫作无理数,比如π,3.1415926535897932384626......而有理数恰恰与它相反,整数和分数统称为有理数其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。有理数分为正数、0、负数正数又分为正整数、正分数负数又分为负整数、负分数如3,-98.11,5.72727272……,7/22都是有理数。全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。①加法的交换律a+b=b+a;②加法的结合律a+(b+c)=(a+b)+c;③存在数0,使0+a=a+0=a;④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;⑤乘法的交换律ab=ba;⑥乘法的结合律a(bc)=(ab)c;⑦分配律a(b+c)=ab+ac;⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a;⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。⑩0a=0文字解释:一个数乘0还等于0。0的绝对值还是0.有理数加减混合运算1.理数加减统一成加法的意义:对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,我们把这样的式子叫做代数和。2.有理数加减混合运算的方法和步骤:(1)运用减法法则将有理数混合运算中的减法转化为加法。(2)运用加法法则,加法交换律,加法结合律简便运算。有理数范围内已有的绝对值,相反数等概念,在实数范围内有同样的意义。一般情况下,有理数是这样分类的:整数、分数;正数、负数和零;负有理数,非负有理数整数和分数统称有理数,有理数可以用a/b的形式表达,其中a、b都是整数,且互质。我们日常经常使用有理数的。比如多少钱,多少斤等。凡是不能用a/b形式表达的实数就是无理数,又叫无限不循环小数第三章用字母表示数代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。例如:ax+2b,-2/3等。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。这十条规则是:五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方等于底数不变指数想乘;积的乘方等于乘方的积。(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.带有“(≤)”“(≥)”“=”“≠”等符号的不是代数式。(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类把多项式中同类项合成一项,叫做合并同类项。如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。如2ab与-3ab,m2n与nm2都是同类项。特别地,所有的常数项也都是同类项。把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。第四章一元一次方程概述只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,a的次数是1。性质一.等式的性质一:等式两边加一个数或减一个数,等式两边相等。二.等式的性质二:等式两边乘一个数或除以一个数(0除外),等式两边相等。三.等式的性质二:两边都可以有未知数。一元一次方程的解1,当a≠0,b=0时,方程有唯一解,x=0;2,当a≠0,b≠0时,方程有唯一解,x=-b/a。一元一次方程与实际问题一元一次方程牵涉到许多的实际问题,例如:工程问题、种植面积问题、比赛比分问题、路程问题。第五章走进图形世界有的面是平面、有的面是曲面。我们知道,面与面相交成线,在棱柱与棱锥中,面与面的交线叫做棱。(edge)其中,相邻两个侧面的交线叫做侧棱棱柱的棱与棱的交点叫做棱柱的顶点(vertex)棱锥的各侧棱的公共点叫做棱锥的顶点。棱柱的侧棱长相等,棱柱的上下底面是相同的多边形,直棱柱的侧面都是长方形。棱锥的侧面都是三角形图形都是由点(point)、线(line)、面(plane)构成。第六章平面图形的认识(一)线段和直线的有关性质:两点之间的所有连线中,线段最短。经过两点有一条直线,并且只有一条直线。线段的中点:线段的中点把线段分成两条长度相等的线段。角的平分线:角的平分线把角分成两个度数相等的角。线段长度的比较:(1)度量法(先量出长度,再比较长度大小)(2)重合法(两同条线段放在一条直线上,一个端点重合,观察另一端点位置。)角的比较:(1)用量角器度量角。(2)重合法(把角的顶点和一条边分别重合,然后看另一边的位置,另一边在外面的角大)角的两种定义:1、角是由两条具有公共端点的射线组成的。2、角也可以看成由一条射线绕着它的端点旋转而形成的。角的有关性质:1、同角(或等角)的余角相等,同角(或等角)的补角相等。2、对顶角相等。两直线平行的有关知识:1、在同一平面内不相交的两条直线叫做平行线。2、经过直线外一点,有且只有一条直线与已知直线平行。3、如果两条直线都与第三条直线平行,那么这两条直线互相平行。两直线垂直的有关知识:1、如果两条直线相交成直角,那么这两条直线互相垂直,两条直线的交点叫做垂足,其中一条直线叫做另一条直线的垂线。2、经过一点有且只有一条直线与已知直线垂直。3、过直线外一点作这条直线的垂线,这一点到垂足之间的线段叫垂线段。垂线段的长度,叫做点到直线的距离。4、直线外一点与直线上各点连接的所有线段中,垂线段最短。七年级下册第七章平面图形的认识(二)同位角:两条直线被第三条直线所截,在二条直线的同侧,且在第三条直线的同旁的二个角叫同位角。内错角:两条直线被第三条直线所截,在二条直线的内侧,且在第三条直线的两旁的二个角叫内错角。同旁内角:两条直线被第三条直线所截,在两条直线的你侧,且在第三条直线的同旁的两个角叫同旁内角。同位角相等两直线平行。内错角相等,两直线平行。同旁内角互补,两直线平行平移由两个方面所决定:平移的方向与平移的距离某图形平移后所得的图形称为此图形的对应图形平移不改变图形的大小与形状图形经过平移后,连结各组对应点的线段平行(或在同一直线上),并且相等三角形的定义:由3条不在同一直线上的线段,首尾依次相接组成的图形称为三角边:组成三角形的三条线段如右所示:线段AB、AC、BC就是三角形的三条边ABC顶点:三角形任意两边的交点如右所示:点A、B、C均为三角形的顶点通常情况下,我们用三角形的三个顶点加以一个“△”来表示一个三角形,在表示三角形时,三个字母之间并无顺序关系如上图中,此三角形可以表示为△ABC,或△ACB或△BAC等等内角:三角形两边所夹的角,称为三角形的内角,简称角例如△ABC中,∠A,∠B,∠C都是三角形的内角边BC称为∠A所对的边,或顶点A所对的边,因此边BC也可以表示为a三角形的分类1)按角分为钝角的三角形钝角三角形:有一个角为直角的三角形直角三角形:有一个角是锐角的三角形锐角三角形:三个角都三角形2)按边分等的三角形等边三角形:三边均相相等的三角形等腰三角形:有两个边均不相等不等边三角形:三个边三角形三角形任意两边之和大于第三边高的定义:在三角形中,从一个顶点向它的对边所在的直线做垂线,顶点与垂足之间的线段称为三角形的高注:1)三角形的高必为线段2)三角形的高必过顶点垂直于对边3)三角形有三条高在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点间的线段称为三角形的角平分线注:1)三角形的角平分线必为线段,而一个角的角平分线为一条射线2)三角形的角平分线必过顶点平分三角形的一内角在三角形中,连结一个顶点与它对边中点的线段,叫做三角形的中线1)三角形的中线必为线段2)三角形的中线必平分对边直角三角形的两个锐角互余。三角形的一个外角等于和它不相邻的两个内角的和。n边形的内角和等于(n-2)×180°三角形的外角:三角形的一边与另一边的延长线所组成的角。多边形的外角:多边形的一边与另一边的延长线所组成的角。多边形每一顶点处有两个外角,这两个角是对顶角,n边形就有2n个外角。多边形的外角和:在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。注:多边形的外角和并不是所有外角的和。第八章幂的运算①am×an=am+n.②am÷an=am-n.③(am)n=amn.④(ab)n=anbn.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(--)0=1.第九章从面积到乘法公式完全平方公式:(a±b)2=a2±2ab+b2平方差公式:(a+b)(a-b)=a2-b2因式分解定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式⑵公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。平方差公式:a^2-b^2=(a+b)(a-b);完全平方公式:a^2±2ab+b^2=(a±b)^2;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)例如:a^2+4ab+4b^2=(a+2b)^2。(3)分解因式技巧1.分解因式与整式乘法是互为逆变形。2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。3.提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:
本文标题:苏科版数学全部概念
链接地址:https://www.777doc.com/doc-5869730 .html