您好,欢迎访问三七文档
数列测试题一、选择题1、如果等差数列na中,34512aaa,那么127...aaa(A)14(B)21(C)28(D)352、设nS为等比数列na的前n项和,已知3432Sa,2332Sa,则公比q(A)3(B)4(C)5(D)63、设数列{}na的前n项和2nSn,则8a的值为(A)15(B)16(C)49(D)644、设ns为等比数列{}na的前n项和,2580aa则52SS(A)-11(B)-8(C)5(D)115、已知等比数列}{na的公比为正数,且3a·9a=225a,2a=1,则1a=A.21B.22C.2D.26、已知等比数列{}na满足0,1,2,nan,且25252(3)nnaan,则当1n时,2123221logloglognaaaA.(21)nnB.2(1)nC.2nD.2(1)n7、公差不为零的等差数列{}na的前n项和为nS.若4a是37aa与的等比中项,832S,则10S等于A.18B.24C.60D.90.8、设等比数列{na}的前n项和为nS,若63SS=3,则69SS=(A)2(B)73(C)83(D)39、已知na为等差数列,1a+3a+5a=105,246aaa=99,以nS表示na的前n项和,则使得nS达到最大值的n是(A)21(B)20(C)19(D)1810、无穷等比数列,42,21,22,1…各项的和等于()A.22B.22C.12D.1211、数列{}na的通项222(cossin)33nnnan,其前n项和为nS,则30S为A.470B.490C.495D.51012、设,Rx记不超过x的最大整数为[x],令{x}=x-[x],则{215},[215],215A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列二、填空题13、设nS为等差数列{}na的前n项和,若36324SS,,则9a。14、在等比数列na中,若公比q=4,且前3项之和等于21,则该数列的通项公式na.15、设等比数列{}na的公比12q,前n项和为nS,则44Sa.16、已知数列{}na满足:434121,0,,N,nnnnaaaan则2009a________;2014a=_________.三、解答题17、已知等差数列{na}中,,0,166473aaaa求{na}前n项和ns..18、已知na是首项为19,公差为-2的等差数列,nS为na的前n项和.(Ⅰ)求通项na及nS;(Ⅱ)设nnba是首项为1,公比为3的等比数列,求数列nb的通项公式及其前n项和nT.19、已知等差数列na满足:37a,5726aa,na的前n项和为nS.(Ⅰ)求na及nS;(Ⅱ)令bn=211na(nN*),求数列nb的前n项和nT.20、设数列{}na的前n项和为,nS已知11,a142nnSa(I)设12nnnbaa,证明数列{}nb是等比数列(II)求数列{}na的通项公式。21、数列{}na的通项222(cossin)33nnnan,其前n项和为nS.(1)求nS;(2)3,4nnnSbn求数列{nb}的前n项和nT.答案1.【答案】C【解析】173454412747()312,4,7282aaaaaaaaaaa2.解析:选B.两式相减得,3433aaa,44334,4aaaqa.3.答案:A【解析】887644915aSS.5.【答案】B【解析】设公比为q,由已知得22841112aqaqaq,即22q,又因为等比数列}{na的公比为正数,所以2q,故211222aaq,选B6.【解析】由25252(3)nnaan得nna222,0na,则nna2,3212loglogaa2122)12(31lognnan,选C.答案:C7.【解析】由2437aaa得2111(3)(2)(6)adadad得1230ad,再由81568322Sad得1278ad则12,3da,所以1019010602Sad,.故选C8.【解析】设公比为q,则36333(1)SqSSS=1+q3=3q3=2于是63693112471123SqqSq.【答案】B9.[解析]:由1a+3a+5a=105得33105,a即335a,由246aaa=99得4399a即433a,∴2d,4(4)(2)412naann,由100nnaa得20n,选B10.答案B11.答案:A【解析】由于22{cossin}33nn以3为周期,故2222222223012452829(3)(6)(30)222S221010211(32)(31)591011[(3)][9]25470222kkkkkk故选A12.【答案】B【解析】可分别求得515122,51[]12.则等比数列性质易得三者构成等比数列.13.解析:填15.316132332656242SadSad,解得112ad,91815.aad14.【答案】n-14【解析】由题意知11141621aaa,解得11a,所以通项nan-14。15.答案:15【解析】对于4431444134(1)1,,151(1)aqsqsaaqqaqq16.【答案】1,0【解析】本题主要考查周期数列等基础知识.属于创新题型.依题意,得2009450331aa,17.解:设na的公差为d,则.11112616350adadadad即22111812164adadad解得118,82,2aadd或因此819819nnSnnnnnSnnnnn,或18.19.【解析】(Ⅰ)设等差数列na的公差为d,因为37a,5726aa,所以有112721026adad,解得13,2ad,所以321)=2n+1nan(;nS=n(n-1)3n+22=2n+2n。(Ⅱ)由(Ⅰ)知2n+1na,所以bn=211na=21=2n+1)1(114n(n+1)=111(-)4nn+1,所以nT=111111(1-+++-)4223nn+1=11(1-)=4n+1n4(n+1),即数列nb的前n项和nT=n4(n+1)。20.解:(I)由11,a及142nnSa,有12142,aaa21121325,23aabaa由142nnSa,...①则当2n时,有142nnSa.....②②-①得111144,22(2)nnnnnnnaaaaaaa又12nnnbaa,12nnbb{}nb是首项13b,公比为2的等比数列.(II)由(I)可得11232nnnnbaa,113224nnnnaa数列{}2nna是首项为12,公差为34的等比数列.1331(1)22444nnann,2(31)2nnan21.解:(1)由于222cossincos333nnn,故312345632313222222222()()()1245(32)(31)(3)(6)((3)))222kkkkSaaaaaaaaakkk1331185(94)2222kkk,3133(49),2kkkkkSSa2323131(49)(31)1321,22236kkkkkkkSSak故1,3236(1)(13),316(34),36nnnknnSnknnnk(*kN)(2)394,424nnnnSnbn21132294[],2444nnnT1122944[13],244nnnT两式相减得12321991999419419443[13][13]8,12444242214nnnnnnnnnnT故2321813.3322nnnnT
本文标题:数列测试题及答案
链接地址:https://www.777doc.com/doc-5869831 .html