您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2020高考二轮复习概率与统计
专题四概率与统计第1讲概率、随机变量及其分布列[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019古典概型·T6互斥事件、独立事件、离散型随机变量·T18独立重复试验的概率·T15随机变量的分布列、等比数列·T212018几何概型·T10古典概型·T8相互独立事件及二项分布·T8二项分布、导数的应用及变量的数学期望、决策性问题·T202017数学文化、有关面积的几何概型·T2二项分布的方差·T13频数分布表、概率分布列的求解、数学期望的应用·T18正态分布、二项分布的性质及概率、方差·T19(1)概率、随机变量及其分布是高考命题的热点之一,命题形式为“一小一大”,即一道选择题或填空题和一道解答题.(2)选择题或填空题常出现在第4~10题或第13~15题的位置,主要考查随机事件的概率、古典概型、几何概型,难度一般.考点一古典概型与几何概型1.(2019·全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.11162.(2019·市模拟考试)2019年1月1日,轨道交通1号线试运行,轨道交通集团面向广大市民开展“参观体验,征求意见”活动.市民可以通过地铁APP抢票,小抢到了三体验票,准备从四位朋友小王、小、小、小中随机选择两位与自己一起去参加体验活动,则小王和小至多一人被选中的概率为()A.16B.13C.23D.563.(2019·市质量检测)如图,线段MN是半径为2的圆O的一条弦,且MN的长为2.在圆O,将线段MN绕点N按逆时针方向转动,使点M移动到圆O上的新位置,继续将新线段NM绕新点M按逆时针方向转动,使点N移动到圆O上的新位置,依此继续转动,……点M的轨迹所围成的区域是图中阴影部分.若在圆O随机取一点,则该点取自阴影部分的概率为()A.4π-63B.1-332πC.π-332D.332π4.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.34考点二互斥事件、相互独立事件的概率1.(2019·市调研测试)已知甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球,现随机从甲袋中取出1个球放入乙袋中,再从乙袋中随机取出1个球,则从乙袋中取出的球是红球的概率为()A.13B.12C.59D.292.(2019·市模拟(一))袋子中装有大小、形状完全相同的2个白球和2个红球,现从中不放回地摸取2个球,已知第二次摸到的是红球,则第一次摸到红球的概率为()A.16B.13C.12D.153.(2019·全国卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.4.(2019·全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.考点三随机变量的分布列、均值与方差题型一超几何分布及其均值与方差[例1](2019·模拟)某市某超市为了回馈新老顾客,决定在2019年元旦来临之际举行“庆元旦,迎新年”的抽奖派送礼品活动.为设计一套趣味性抽奖送礼品的活动方案,该超市面向该市某高中学生征集活动方案,该中学某班数学兴趣小组提供的方案获得了征用.方案如下:将一个4×4×4的体各面均涂上红色,再把它分割成64个相同的小体.经过搅拌后,从中任取两个小体,记它们的着色面数之和为ξ,记抽奖一次中奖的礼品价值为η.(1)求P(ξ=3).(2)凡是元旦当天在该超市购买物品的顾客,均可参加抽奖.记抽取的两个小体着色面数之和为6,设为一等奖,获得价值50元的礼品;记抽取的两个小体着色面数之和为5,设为二等奖,获得价值30元的礼品;记抽取的两个小体着色面数之和为4,设为三等奖,获得价值10元的礼品,其他情况不获奖.求某顾客抽奖一次获得的礼品价值的分布列与数学期望.题型二相互独立事件的概率及均值与方差[例2](2019·市模拟(一))东方商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价8元,售价12元,如果两天无法售出,则食品过期作废,且两天的销售情况互不影响,为了解市场的需求情况,现统计该食品在本地区100天的销售量如下表:销售量/份15161718天数20304010(视样本频率为概率)(1)根据该食品100天的销售量统计表,记两天中一共销售该食品份数为ξ,求ξ的分布列与数学期望;(2)以两天该食品所获得的利润期望为决策依据,东方商店一次性购进32或33份,哪一种得到的利润更大?题型三二项分布及其均值与方差[例3](2019·模拟)前不久,省社科院发布了2017年度“城市居民幸福排行榜”,市成为本年度“最幸福城市”.随后,师大附中学生会组织部分同学,用“10分制”随机调查“”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)记录了他们的幸福度分数.(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”,求从这16人中随机选取3人,至多有1人的幸福度是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示选到幸福度为“极幸福”的人数,求ξ的分布列及数学期望.(2019·市调研测试)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20,40)的产品视为合格品,否则为不合格品,下图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.设备改造前样本的频率分布直方图设备改造后样本的频数分布表质量指标值[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)频数2184814162(1)请估计该企业在设备改造前的产品质量指标的平均值.(2)该企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在[25,30)的定为一等品,每件售价240元;质量指标值落在[20,25)或[30,35)的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元.根据上表的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为X(单位:元),求X的分布列和数学期望.考点四正态分布[例4]为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95用样本平均数x—作为μ的估计值μ^,用样本标准差s作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σZμ+3σ)=0.9974.0.997416≈0.9592,0.008≈0.09.已知某厂生产的电子产品的使用寿命X(单位:小时)服从正态分布N(1000,σ2),且P(X800)=0.1,P(X≥1300)=0.02.(1)现从该厂随机抽取一件产品,求其使用寿命在[1200,1300)的概率;(2)现从该厂随机抽取三件产品,记抽到的三件产品使用寿命在[800,1200)的件数为Y,求Y的分布列和数学期望E(Y).考点五概率问题中的交汇与创新[例5](2019·全国卷Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api-1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.①证明:{pi+1-pi}(i=0,1,2,…,7)为等比数列;②求p4,并根据p4的值解释这种试验方案的合理性.1.已知某种植物的种子每粒发芽的概率都为13,某实验小组对该种植物的种子进行发芽试验,若该实验小组共种植四粒该植物的种子(每粒种子的生长因素相同且发芽与否相互独立),用ξ表示这四粒种子中发芽的种子数与未发芽的种子数的差的绝对值.(1)求随机变量ξ的概率分布和数学期望;(2)求不等式ξx2-ξx+1>0的解集为R的概率.2.某网络广告公司计划从甲、乙两个中选择一个拓展公司的广告业务,为此该公司随机抽取了甲、乙两个某月中10天的日访问量(单位:万次),整理后得到如图所示的茎叶图.(1)请说明该公司应该选择哪个;(2)根据双方规定,该公司将根据所选的日访问量进行付费,付费标准如下:日访问量n(单位:万次)n2525≤n≤35n35付费标准(单位:元/日)5007001000考虑到资金有限,若要使该公司每个月(按30天计)付的费用最少,则该公司应该选择哪个?【课后专项练习】A组一、选择题1.(2019·省适应性考试)在2018中国国际大数据产业博览会期间,有甲、乙、丙、丁4名游客准备到的黄果树瀑布、梵净山、万峰林三个景点旅游,其中每个人只能去一个景点,每个景点至少要去一个人,则游客甲去梵净山旅游的概率为()A.14B.13C.12D.232.(2019·八所重点中学联考)小华的爱好是玩飞镖,现有如图所示的由两个边长都为2的形ABCD和OPQR构成的标靶图形,如果O正好是形ABCD的中点,而形OPQR可以绕O点旋转.若小华随机向标靶投飞镖,一定能射中标靶,则他射中阴影部分的概率是()A.13B.14C.16D.173.小、小钱、小、小到4个景点旅游,每人只去一个景点,设事件A=“4个人去的景点不相同”,事件B=“小独自去一个景点”,则P(A|B)=()A.29B.
本文标题:2020高考二轮复习概率与统计
链接地址:https://www.777doc.com/doc-5873683 .html