您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 平方差公式1人教版八年级上册数学教案
14.2乘法公式14.2.1平方差公式1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解.(重点)2.掌握平方差公式的应用.(重点)一、情境导入1.教师引导学生回忆多项式与多项式相乘的法则.学生积极举手回答.多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.二、合作探究探究点:平方差公式【类型一】判断能否应用平方差公式进行计算下列运算中,可用平方差公式计算的是()A.(x+y)(x+y)B.(-x+y)(x-y)C.(-x-y)(y-x)D.(x+y)(-x-y)解析:A中含x、y的项符号相同,不能用平方差公式计算,错误;B中(-x+y)(x-y)=-(x-y)(x-y),含x、y的项符号相同,不能用平方差公式计算,错误;C中(-x-y)(y-x)=(x+y)(x-y),含x的项符号相同,含y的项符号相反,能用平方差公式计算,正确;D中(x+y)(-x-y)=-(x+y)(x+y),含x、y的项符号相同,不能用平方差公式计算,错误;故选C.方法总结:对于平方差公式,注意两个多项式均为二项式且两个二项式中有一项完全相同,另一项互为相反数.【类型二】直接应用平方差公式进行计算利用平方差公式计算:(1)(3x-5)(3x+5);(2)(-2a-b)(b-2a);(3)(-7m+8n)(-8n-7m);(4)(x-2)(x+2)(x2+4).解析:直接利用平方差公式进行计算即可.解:(1)(3x-5)(3x+5)=(3x)2-52=9x2-25;(2)(-2a-b)(b-2a)=(-2a)2-b2=4a2-b2;(3)(-7m+8n)(-8n-7m)=(-7m)2-(8n)2=49m2-64n2;(4)(x-2)(x+2)(x2+4)=(x2-4)(x2+4)=x4-16.方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a和b可以是具体数,也可以是单项式或多项式.【类型三】平方差公式的连续使用求2(3+1)(32+1)(34+1)(38+1)的值.解析:根据平方差公式,可把2看成是(3-1),再根据平方差公式即可算出结果.解:2(3+1)(32+1)(34+1)(38+1)=(3-1)(3+1)(32+1)(34+1)(38+1)=(32-1)(32+1)(34+1)(38+1)=(34-1)(34+1)(38+1)=(38-1)(38+1)=316-1.方法总结:连续使用平方差公式,直到不能使用为止.【类型四】应用平方差公式进行简便运算利用平方差公式简算:(1)2013×1923;(2)13.2×12.8.解析:(1)把2013×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.解:(1)2013×1923=(20+13)×(20-13)=400-19=39989;(2)13.2×12.8=(13+0.2)×(13-0.2)=169-0.04=168.96.方法总结:熟记平方差公式的结构并构造出公式结构是解题的关键.【类型五】化简求值先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y-x),其中x=1,y=2.解析:利用平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.解:(2x-y)(y+2x)-(2y+x)(2y-x)=4x2-y2-(4y2-x2)=4x2-y2-4y2+x2=5x2-5y2.当x=1,y=2时,原式=5×12-5×22=-15.方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.【类型六】利用平方差公式探究整式的整除性问题对于任意的正整数n,整式(3n+1)(3n-1)-(3-n)(3+n)的值一定是10的倍数吗?解析:利用平方差公式对代数式化简,再判断是否是10的倍数.解:原式=9n2-1-(9-n2)=10n2-10=10(n+1)(n-1),∵n为正整数,∴(n-1)(n+1)为整数,即(3n+1)(3n-1)-(3-n)(3+n)的值是10的倍数.方法总结:对于平方差中的a和b可以是具体的数,也可以是单项式或多项式,在探究整除性或倍数问题时,要注意这方面的问题.【类型七】平方差公式的实际应用王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.解:李大妈吃亏了.理由:原正方形的面积为a2,改变边长后面积为(a+4)(a-4)=a2-16,∵a2>a2-16,∴李大妈吃亏了.方法总结:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.【类型八】平方差公式的几何背景如图①,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.解析:∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b),即可验证的乘法公式为:(a+b)(a-b)=a2-b2.方法总结:通过几何图形之间的数量关系可对平方差公式做出几何解释.三、板书设计平方差公式文字语言:两数和与这两数差的积,等于它们的平方差符号语言:(a+b)(a-b)=a2-b2学生通过“做一做”发现平方差公式,同时通过“试一试”用几何方法证明公式的正确性.通过这两种方式的演算,让学生理解平方差公式.本节教学内容较多,因此教材中的练习可以让学生在课后完成.
本文标题:平方差公式1人教版八年级上册数学教案
链接地址:https://www.777doc.com/doc-5873927 .html