您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第2课时利用二次函数求方程的近似根北师大版九年级下册数学导学案
2.5二次函数与一元二次方程第2课时利用二次函数求方程的近似根学习目标:体会二次函数与方程之间的联系;掌握用图象法求方程的近似根;理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,及何时方程有两个不等的实根,两个相等的实根和没有实根;理解一元二次方程的根就是二次函数y=h(h是实数)图象交点的横坐标.学习重点:本节重点把握二次函数图象与x轴(或y=h)交点的个数与一元二次方程的根的关系.掌握此点,关键是理解二次函数y=ax2+bx+c图象与x轴交点,即y=0,即ax2+bx+c=0,从而转化为方程的根,再应用根的判别式,求根公式判断,求解即可,二次函数图象与x轴的交点是二次函数的一个重要内容,在其考查中也有重要的地位.学习难点:应用一元二次方程根的判别式,及求根公式,来对二次函数及其图象进行进一步的理解.此点一定要结合二次函数的图象加以记忆.学习过程:一、实例讲解:我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面以40m/s的速度竖直向上抛出起,小球的高度h(m)与运动时间t(s)的关系如图所示,那么(1).h和t的关系式是什么?(2).小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.二、议一议:在同一坐标系中画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象并回答下列问题:(1).每个图象与x轴有几个交点?(2).一元二次方程?x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?三、例题:【例1】已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为.【例2】抛物线y=ax2+bx+c与x轴交于点A(-3,0),对称轴为x=-1,顶点C到x轴的距离为2,求此抛物线表达式.【例5】有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三点为顶点的三角形面积为3.请写出满足上述全部特点的一个二次函数表达式.四、随堂练习:1.求下列二次函数的图象与x轴交点坐标,并作草图验证.(1)y=x2-2x;(2)y=x2-2x-3.2.你能利用a、b、c之间的某种关系判断二次函数y=ax2+bx+c的图象与x轴何时有两个交点、一个交点,何时没有交点?五、课后练习:1.抛物线y=a(x-2)(x+5)与x轴的交点坐标为.2.已知抛物线的对称轴是x=-1,它与x轴交点的距离等于4,它在y轴上的截距是-6,则它的表达式为.3.若a>0,b>0,c>0,△>0,那么抛物线y=ax2+bx+c经过象限.4.抛物线y=x2-2x+3的顶点坐标是.5.若抛物线y=2x2-(m+3)x-m+7的对称轴是x=1,则m=.6.抛物线y=2x2+8x+m与x轴只有一个交点,则m=.7.已知抛物线y=ax2+bx+c的系数有a-b+c=0,则这条抛物线经过点.8.二次函数y=kx2+3x-4的图象与x轴有两个交点,则k的取值范围.9.抛物线y=x2-2ax+a2的顶点在直线y=2上,则a的值是.10.抛物线y=3x2+5x与两坐标轴交点的个数为()A.3个B.2个C.1个D.无11.如图1所示,函数y=ax2-bx+c的图象过(-1,0),则bacacbcba的值是()A.-3B.3C.21D.-2112.已知二次函数y=ax2+bx+c的图象如图2所示,则下列关系正确的是()A.0<-ab2<1B.0<-ab2<2C.1<-ab2<2D.-ab2=113.已知二次函数y=x2+mx+m-2.求证:无论m取何实数,抛物线总与x轴有两个交点.14.已知二次函数y=x2-2kx+k2+k-2.(1)当实数k为何值时,图象经过原点?(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?15.已知抛物线y=mx2+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.
本文标题:第2课时利用二次函数求方程的近似根北师大版九年级下册数学导学案
链接地址:https://www.777doc.com/doc-5875606 .html