您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 生活中的优化问题举例1
§1.4.1生活中的优化问题举例(1)【学情分析】:导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。【教学目标】:1.掌握利用导数求函数最值的基本方法。2.提高将实际问题转化为数学问题的能力.提高学生综合、灵活运用导数的知识解决生活中问题的能力奎屯王新敞新疆3.体会导数在解决实际问题中的作用.【教学重点】:利用导数解决生活中的一些优化问题.【教学难点】:将生活中的问题转化为用函数表示的数学问题,再用导数解决数学问题,从而得出问题的最优化选择。【教学突破点】:利用导数解决优化问题的基本思路:【教法、学法设计】:【教学过程设计】:教学环节教学活动设计意图(1)复习引入:提问用导数法求函数最值的基本步骤学生回答:导数法求函数最值的基本步骤为课题作铺垫.(2)典型例题讲解例1.海报版面尺寸的设计学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小?解:设版心的高为xdm,则版心的宽为128xdm,此时四周空白面积为128512()(4)(2)12828,0Sxxxxxx。求导数,得'2512()2Sxx。选择一个学生感觉不是很难的题目作为例题,让学生自己体验一下应用题中最优化化问题的解法。解决数学模型作答用函数表示的数学问题优化问题用导数解决数学问题优化问题的答案令'2512()20Sxx,解得16(16xx舍去)。于是宽为128128816x。当(0,16)x时,'()Sx0;当(16,)x时,'()Sx0.因此,16x是函数()Sx的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。(3)利用导数解决优化问题的基本思路:1、生活中的优化问题转化为数学问题2、立数学模型(勿忘确定函数定义域)3、利用导数法讨论函数最值问题使学生对该问题的解题思路清析化。(4)加强巩固1例2.饮料瓶大小对饮料公司利润的影响(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?(2)是不是饮料瓶越大,饮料公司的利润越大?【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是20.8r分,其中r是瓶子的半径,单位是厘米。已知每出售1mL的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6cm问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?(2)瓶子的半径多大时,每瓶的利润最小?解:由于瓶子的半径为r,所以每瓶饮料的利润是332240.20.80.8,0633ryfrrrrr令20.8(2)0frrr解得2r(0r舍去)当0,2r时,0fr;当2,6r时,0fr.当半径2r时,0fr它表示fr单调递增,即半径越大,利润越高;当半径2r时,0fr它表示fr单调递减,即半径越大,利润越低.(1)半径为2cm时,利润最小,这时20f,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.(2)半径为6cm时,利润最大.换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?有图像知:当3r时,30f,即瓶子的半径为3cm时,饮料的利润与使学生能熟练步骤.饮料瓶的成本恰好相等;当3r时,利润才为正值.当0,2r时,0fr,fr为减函数,其实际意义为:瓶子的半径小于2cm时,瓶子的半径越大,利润越小,半径为2cm时,利润最小.(5)加强巩固2例3.磁盘的最大存储量问题计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。为了保障磁盘的分辨率,磁道之间的宽度必需大于m,每比特所占用的磁道长度不得小于n。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。问题:现有一张半径为R的磁盘,它的存储区是半径介于r与R之间的环形区域.(1)是不是r越小,磁盘的存储量越大?(2)r为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?解:由题意知:存储量=磁道数×每磁道的比特数。设存储区的半径介于r与R之间,由于磁道之间的宽度必需大于m,且最外面的磁道不存储任何信息,故磁道数最多可达Rrm。由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达2rn。所以,磁盘总存储量()frRrm×2rn2()rRrmn(1)它是一个关于r的二次函数,从函数解析式上可以判断,不是r越小,磁盘的存储量越大.(2)为求()fr的最大值,计算()0fr.2()2frRrmn令()0fr,解得2Rr当2Rr时,()0fr;当2Rr时,()0fr.因此2Rr时,磁盘具有最大存储量。此时最大存储量为224Rmn提高提高问题的综合性,锻炼学生能力。(6)课堂小结1、建立数学模型(确立目标函数)是解决应用性性问题的关键2、要注意不能漏掉函数的定义域3、注意解题步骤的规范性(7)作业布置:教科书P104A组1,2,3。(8备用题目:1、要做一个圆锥形漏斗,其母线长为20cm,要使其体积最大,则其高为(A)A2033cmB100cmC20cmD203cm2、设正四棱柱体积为V,那么其表面积最小时,底面边长为(A)A3VB32VC34VD32V3、设8分成两个数,使其平方和最小,则这两个数为4。4、用长度为的铁丝围成长方形,则围成的最大面积是4。5、某厂生产产品固定成本为500元,每生产一单位产品增加成本10元。已知需求函数为:2004qp,问:产量为多少时,利润最大?最大利润是多少?解:先求出利润函数的表达式:()()()(50010)LqRqCqpqq22001500104050044qqqqq再求导函数:1()402Lqq求得极值点:q=80。只有一个极值点,就是最值点。故得:q=80时,利润最大。最大利润是:21(80)80408050011004L注意:还可以计算出此时的价格:p=30元。6、用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器.先在四角分别截去一个小正方形.然后把四边翻转90度角,再焊接而成(如图).问容器的高为多少时,容器的容积最大?最大容积是多少?解:设容器高为xcm,容器的体积为V(x),则()(902)(482)Vxxxx3242764320xxx4820,9020,0xxx48482x902x482xxx024x2()()125524320VxVxxx求导数得12(10)(36)xx令12()010,36()Vxxx解得舍(0,10),'()0,()xVxVx当时那么为增函数(10,24),'()0,()xVxVx当时那么为减函数,(0,24),()10Vxx因此在定义域内函数只有当时取得最大值3(10)10(9020)(4820)19600()Vcm其最大值为3:10,,19600()cmcm答当容器的高为时容器的容积最大最大容积为令12()010,36()Vxxx解得舍(0,10),'()0,()xVxVx当时那么为增函数(10,24),'()0,()xVxVx当时那么为减函数,(0,24),()10Vxx因此在定义域内函数只有当时取得最大值3(10)10(9020)(4820)19600()Vcm其最大值为3:10,,19600()cmcm答当容器的高为时容器的容积最大最大容积为
本文标题:生活中的优化问题举例1
链接地址:https://www.777doc.com/doc-5875975 .html