您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高一数学人教A版必修三同步课件第三章概率313
3.1.3概率的基本性质学案·新知自解1.能够说出事件的包含、并、交,相等事件,互斥事件,以及对立事件的概念.2.能叙述互斥事件与对立事件的区别与联系.3.会利用互斥事件、对立事件的概率性质求概率.事件的关系与运算概率的几个基本性质1.概率的取值范围为________.2.__________的概率为1,____________的概率为0.3.概率加法公式为:如果事件A与B为互斥事件,则P(A∪B)=____________.特例:若A与B为对立事件,则P(A)=__________.P(A∪B)=_____,P(A∩B)=_____.[0,1]必然事件不可能事件P(A)+P(B)1-P(B)10[化解疑难](1)互斥事件与对立事件的区别与联系两个事件A与B是互斥事件,有如下三种情况:①若事件A发生,则事件B就不发生;②若事件B发生,则事件A就不发生;③事件A、B都不发生.两个事件A、B是对立事件,仅有前两种情况.因此,互斥未必对立,但对立一定互斥.(2)概率加法公式的应用①只有当A、B互斥时,公式P(A∪B)=P(A)+P(B)才成立;只有当A、B对立时,公式P(A)=1-P(B)才成立.②当求较复杂的事件的概率时,可将其分解成较简单的彼此互斥的事件,化难为易.③当所求事件的概率正面求解较难,但其对立事件的概率易求时,可用对立事件公式间接求解,对于事件中含有“至多”“至少”等这样的问题,常用此法求解,即正难则反.1.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品有次品,但不全是次品”,则下列结论中错误的是()A.A与C互斥B.B与C互斥C.任何两个都互斥D.任何两个都不互斥解析:由题意知事件A、B、C两两不可能同时发生,因此两两互斥.答案:D2.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为()A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品解析:至少有2件次品包含2,3,4,5,6,7,8,9,10件次品,共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.答案:B3.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为.解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以由互斥事件概率的加法公式得,中国队夺得女子乒乓球单打冠军的概率为37+14=1928.答案:1928教案·课堂探究事件间关系的判断自主练透型某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件:(1)“恰有1名男生”与“恰有2名男生”;(2)“至少有1名男生”与“全是男生”;(3)“至少有1名男生”与“全是女生”;(4)“至少有一名男生”与“至少有一名女生”.解析:从3名男生和2名女生中任选2人有如下三种结果:2名男生,2名女生,1男1女.(1)“恰有一名男生”指1男1女,与“恰有2名男生”不能同时发生,它们是互斥事件;但是当选取的结果是2名女生时,该两事件都不发生,所以它们不是对立事件.(2)“至少一名男生”包括2名男生和1男1女两种结果,与事件“全是男生”可能同时发生,所以它们不是互斥事件.(3)“至少一名男生”与“全是女生”不可能同时发生,所以它们互斥,由于它们必有一个发生,所以它们是对立事件.(4)“至少有一名女生”包括1男1女与2名女生两种结果,当选出的是1男1女时,“至少有一名男生”与“至少一名女生”同时发生,所以它们不是互斥事件.[归纳升华]判断事件间关系的方法(1)要考虑试验的前提条件,无论是包含、相等,还是互斥、对立,其发生的条件都是一样的.(2)考虑事件间的结果是否有交事件,可考虑利用Venn图分析,对较难判断关系的,也可列出全部结果,再进行分析.1.从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中任抽取1张,判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出牌的点数为5的倍数”与“抽出牌的点数大于9”.解析:(1)是互斥事件,不是对立事件.理由是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此二者不是对立事件.(2)既是互斥事件,又是对立事件.理由是:从40张扑克牌中任意抽取1张,“抽出红色牌”与“抽出黑色牌”两个事件不可能同时发生,且其中必有一个发生,因此它们既是互斥事件,又是对立事件.(3)不是互斥事件,当然不可能是对立事件.理由是:从40张扑克牌中任意抽取1张,“抽出牌的点数为5的倍数”与“抽出牌的点数大于9”这两个事件可能同时发生,如抽出牌的点数为10,因此,二者不是互斥事件,当然不可能是对立事件.事件的运算多维探究型盒子里有6个红球,4个白球,现从中任取三个球,设事件A={3个球中有1个红球,2个白球},事件B={3个球中有2个红球,1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.问,(1)事件D与A、B是什么样的运算关系?(2)事件C与A的交事件是什么事件?解析:(1)对于事件D,可能的结果为1个红球2个白球,或2个红球1个白球,故D=A∪B.(2)对于事件C,可能的结果为1个红球2个白球,2个红球1个白球,3个红球,故C∩A=A.[归纳升华]进行事件运算应注意的问题(1)进行事件的运算时,一是要紧扣运算的定义,二是要全面考查同一条件下的试验可能出现的全部结果,必要时可利用Venn图或列出全部的试验结果进行分析.(2)在一些比较简单的题目中,需要判断事件之间的关系时,可以根据常识来判断.但如果遇到比较复杂的题目,就得严格按照事件之间关系的定义来推理.2.在本例中,设事件E={3个红球},事件F={3个球中至少有一个白球},那么事件C与A、B、E是什么运算关系?C与F的交事件是什么?解析:C=A∪B∪E;C∩F=A∪B.互斥事件与对立事件的概率公式的应用多维探究型在数学考试中,小王的成绩在90分以上(含90分)的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,在60分以下(不含60分)的概率是0.07.求:(1)小王在数学考试中取得80分以上(含80分)成绩的概率;(2)小王数学考试及格的概率.解析:设小王的成绩在90分以上(含90分)、在80~89分、在60分以下(不含60分)分别为事件A、B、C,且A,B,C两两互斥.(1)设小王的成绩在80分以上(含80分)为事件D,则D=A+B,所以P(D)=P(A+B)=P(A)+P(B)=0.18+0.51=0.69.(2)设小王数学考试及格为事件E,由于事件E与事件C为对立事件,所以P(E)=1-P(C)=1-0.07=0.93.[归纳升华]概率公式的应用(1)互斥事件的概率加法公式P(A∪B)=P(A)+P(B)是一个非常重要的公式,运用该公式解题时,首先要分清事件间是否互斥,同时要学会把一个事件分拆为几个互斥事件,然后求出各事件的概率,用加法公式得出结果.(2)当直接计算符合条件的事件个数比较烦琐时,可间接地先计算出其对立事件的个数,求得对立事件的概率,然后利用对立事件的概率加法公式P(A)+P(B)=1,求出符合条件的事件的概率.3.一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出的1球是红球或黑球或白球的概率.解析:法一:(1)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得红球或黑球共有5+4=9种不同取法,任取1球有12种取法.∴任取1球得红球或黑球的概率为P1=912=34.(2)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得白球有2种取法,从而得红球或黑球或白球的概率为5+4+212=1112.法二:(利用互斥事件求概率)记事件A1={任取1球为红球},A2={任取1球为黑球},A3={任取1球为白球},A4={任取1球为绿球},则P(A1)=512,P(A2)=412,P(A3)=212,P(A4)=112.根据题意知,事件A1、A2、A3、A4彼此互斥,由互斥事件概率公式,得(1)取出1球为红球或黑球的概率为P(A1∪A2)=P(A1)+P(A2)=512+412=34.(2)取出1球为红球或黑球或白球的概率为P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.法三:(利用对立事件求概率)(1)由法二知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1∪A2的对立事件为A3∪A4,所以取得1球为红球或黑球的概率为P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1-212-112=912=34.(2)A1∪A2∪A3的对立事件为A4.所以P(A1∪A2∪A3)=1-P(A4)=1-112=1112.谢谢观看!
本文标题:高一数学人教A版必修三同步课件第三章概率313
链接地址:https://www.777doc.com/doc-5886006 .html