您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 高一数学人教版A版必修二课件223直线与平面平行的性质
第二章§2.2直线、平面平行的判定及其性质2.2.3直线与平面平行的性质1.掌握直线与平面平行的性质定理,明确由线面平行可推出线线平行;2.结合具体问题体会化归与转化的数学思想.问题导学题型探究达标检测学习目标问题导学新知探究点点落实知识点直线与平面平行的性质思考1如图,直线l∥平面α,直线a⊂平面α,直线l与直线a一定平行吗?为什么?答案不一定,因为还可能是异面直线.思考2如图,直线a∥平面α,直线a⊂平面β,平面α∩平面β=直线b,满足以上条件的平面β有多少个?直线a,b有什么位置关系?答案无数个,a∥b.答案答案文字语言一条直线与一个平面_____,则过这条直线的任一平面与此平面的_____与该直线______符号语言a∥α,_____________⇒a∥b图形语言平行交线平行a⊂β,α∩β=b返回题型探究重点难点个个击破类型一线面平行的性质及应用例1如图,用平行于四面体ABCD的一组对棱AB,CD的平面截此四面体,求证:截面MNPQ是平行四边形.证明因为AB∥平面MNPQ,平面ABC∩平面MNPQ=MN,且AB⊂平面ABC,所以由线面平行的性质定理,知AB∥MN.同理AB∥PQ,所以MN∥PQ.同理可得MQ∥NP.所以截面四边形MNPQ是平行四边形.反思与感悟解析答案跟踪训练1如图,已知E,F分别是菱形ABCD边BC,CD的中点,EF与AC交于点O,点P在平面ABCD之外,M是线段PA上一动点,若PC∥平面MEF,试求PM∶MA的值.解如图,连接BD交AC于点O1,连接OM,因为PC∥平面MEF,平面PAC∩平面MEF=OM,解析答案所以PC∥OM,所以PMPA=OCAC,在菱形ABCD中,因为E,F分别是边BC,CD的中点,所以OCO1C=12.故PM∶MA=1∶3.又AO1=CO1,所以PMPA=OCAC=14,类型二线面平行的性质与判定的综合应用例2已知,a∥α,且a∥β,α∩β=l,求证:a∥l.证明如图,过a作平面γ交α于b.因为a∥α,所以a∥b.过a作平面ε交平面β于c.因为a∥β,所以a∥c,所以b∥c.又b⊄β且c⊂β,所以b∥β.又平面α过b交β于l,所以b∥l.因为a∥b,所以a∥l.解析答案跟踪训练2如图所示,四面体ABCD被一平面所截,截面EFGH是一个矩形.求证:CD∥平面EFGH.证明∵截面EFGH是矩形,∴EF∥GH.又GH⊂平面BCD,EF⊄平面BCD.∴EF∥平面BCD.而EF⊂平面ACD,平面ACD∩平面BCD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH,∴CD∥平面EFGH.解析答案返回123达标检测4解析答案1.已知直线l∥平面α,l⊂平面β,α∩β=m,则直线l,m的位置关系是()A.相交B.平行C.异面D.相交或异面解析由直线与平面平行的性质定理知l∥m.B1234解析答案2.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线有()A.0条B.1条C.0条或1条D.无数条解析过直线a与交点作平面β,设平面β与α交于直线b,则a∥b,若所给n条直线中有1条是与b重合的,则此直线与直线a平行,若没有与b重合的,则与直线a平行的直线有0条.C12343.如图所示,直线a∥平面α,A∉α,并且a和A位于平面α两侧,点B,C∈a,AB,AC分别交平面α于点E,F,若BC=4,CF=5,AF=3,则EF=____.所以EFBC=AFAC.所以EF=AF×BCAC=3×45+3=32.32解析由于点A不在直线a上,则直线a和点A确定一个平面β,所以α∩β=EF.因为a∥平面α,a⊂平面β,所以EF∥a.解析答案1234解析答案4.如图,AB是圆O的直径,点C是圆O上异于A,B的点,P为平面ABC外一点,E,F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明.解析直线l∥平面PAC,证明如下:因为E,F分别是PA,PC的中点,所以EF∥AC.又EF⊄平面ABC,且AC⊂平面ABC,所以EF∥平面ABC.而EF⊂平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l⊄平面PAC,EF⊂平面PAC,所以l∥平面PAC.规律与方法1.在遇到线面平行时,常需作出过已知直线与已知平面相交的辅助平面,以便运用线面平行的性质.2.要灵活应用线线平行、线面平行的相互联系、相互转化.在解决立体几何中的平行问题时,一般都要用到平行关系的转化.转化思想是解决这类问题的最有效的方法.返回
本文标题:高一数学人教版A版必修二课件223直线与平面平行的性质
链接地址:https://www.777doc.com/doc-5886104 .html