您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 高三数学课件函数的单调性高三数学课件
制作:朱荆丽一、基础知识图表单调性定义判定方法应用定义法复合函数法图象法奇偶性定义判定方法应用定义法变通法图象法图象性质函数性质函数的单调性和奇偶性二、函数的单调性1、如果对于属于定义域A内某个区间上的任意两个自变量的值x1,x2,当x1<x2,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.2、如果对于属于定义域A内某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.3、如果函数f(x)在某个区间是增函数或减函数,那么就说f(x)在这一区间具有(严格的)单调性,这一区间叫做f(x)的单调区间.函数图像能直观地显示函数的单调性.在单调区间上的增函数,它的图像是沿x轴正方向逐渐上升的;在单调区间上的减函数,它的图像是沿x轴正方向逐渐下降的.例1、画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间.评析:函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上.y0x-11解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数.拓展:已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.分析要充分运用函数的单调性是以对称轴为界线这一特征.单调性性质规律总结:若函数f(x),g(x)在给定的区间上具有单调性,利用增(减)函数的定义容易证得,在这个区间上:(1)函数f(x)与f(x)+C(C为常数)具有相同的单调性.(2)C>0时,函数f(x)与C·f(x)具有相同的单调性;C<0时,函数f(x)与C·f(x)具有相反的单调性.(3)若f(x)≠0,则函数f(x)与具有相反的单调性.(4)若函数f(x),g(x)都是增(减)函数,则f(x)+g(x)仍是增(减)函数.(5)若f(x)>0,g(x)>0,且f(x)与g(x)都是增(减)函数,则f(x)·g(x)也是增(减)函数;若f(x)<0,g(x)<0,且f(x)与g(x)都是增(减)函数,则f(x)·g(x)是减(增)函数.三、函数的奇偶性1、如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么f(x)叫做奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么f(x)叫做偶函数.2、奇函数的图像关于原点对称;偶函数的图像关于y轴对称.如例1中的函数的图象关于y轴对称,故其为偶函数。另一方面,由定义f(-x)=-(-x)2+2|-x|+3=-x2+2|x|+3=f(x),故其为偶函数。3、函数按是否具有奇偶性可分为四类:奇函数,偶函数,既奇且偶函数(既是奇函数又是偶函数),非奇非偶函数(既不是奇函数也不是偶函数例2、判断下列函数的奇偶性:(1)f(x)=(2)f(x)=(3)f(x)=(x-1).(4)f(x)=注意:由于函数解析式中的绝对值使得所给函数不像具有奇偶性,若不作深入思考,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭示之后,函数的奇偶性就非常明显了.这样看来,解题中先确定函数的定义域不仅可以避免错误,而且有时还可以避开讨论,简化解题过程.评析用定义判断函数的奇偶性的步骤与方法如下:(1)求函数的定义域,并考查定义域是否关于原点对称.(2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查其等价形式f(-x)±f(x)=0或是否成立,从而判断函数的奇偶性.总结:奇函数和偶函数还具有以下性质:(1)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.(2)奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数的积(商、分母不为零)为奇函数.(3)奇函数在其定义域的对称区间上单调性相同,偶函数在其定义域的对称区间上单调性相反。即奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反.(4)定义域关于原点对称的函数f(x)可以表示成一个奇函数与一个偶函数的和,即f(x)=。(5)若f(x)是(-a,a)(a>0)上的奇函数,则f(0)=0。综合例题:已知函数(1)判断它的奇偶性。(2)求证它是单调递增函数。(3)求它的反函数。分析:根据定义讨论(或证明)函数的单调性的一般步骤是:(1)设x1、x2是给定区间内任意两个值,且x1<x2;(2)作差f(x1)-f(x2),并将此差式变形;(3)判断f(x1)-f(x2)的正负,从而确定函数的单调性.课堂总结:函数的单调性是函数的重要性质,本节内容在高考中年年必考,主要考查函数单调性与奇偶性的判定,单调区间的求法,以及单调性与奇偶性的综合题.关键是在理解的基础上,要记准、记熟函数单调性和奇偶性有关概念和判定方法并能在解题中灵活的加以运用.千万不要忘记解题时首先要考查定义域.本节课涉及的重要数学思想方法有:分类讨论思想、数形结构思想、转化思想等。作业:«冲刺红五月»P19-22
本文标题:高三数学课件函数的单调性高三数学课件
链接地址:https://www.777doc.com/doc-5886858 .html