您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高三数学课件圆锥曲线的应用高三数学课件
圆锥曲线的应用高三备课组一、基本知识概要:解析几何在日常生活中应用广泛,如何把实际问题转化为数学问题是解决应用题的关键,而建立数学模型是实现应用问题向数学问题转化的常用常用方法。本节主要通过圆锥曲线在实际问题中的应用,说明数学建模的方法,理解函数与方程、等价转化、分类讨论等数学思想。二、例题:例题1:设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离地球相距万千米和万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为,求该慧星与地球的最近距离。说明(1):在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是,另一个是ca.ca二、例题:例题1:说明(2):以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质。思考讨论:椭圆上任一点到焦点的距离的最大值和最小值是多少?怎样证明?说明:本题的关键是确定P点的位置,另外还要求学生掌握方位角的基本概念。A,B,C是我方三个炮兵阵地,A在B正东6,C在B正北偏西,相距4,P为敌炮阵地,某时刻A处发现敌炮阵地的某种信号,由于B,C两地比A距P地远,因此4后,B,C才同时发现这一信号,此信号的传播速度为1,A若炮击P地,求炮击的方位角。(图见优化设计教师用书P249例2)Km30KmssKm/例2:例3:根据我国汽车制造的现实情况,一般卡车高3m,宽1.6m。现要设计横断面为抛物线型的双向二车道的公路隧道,为保障双向行驶安全,交通管理规定汽车进入隧道后必须保持中线0.4m的距离行驶。已知拱口AB宽恰好是拱高OC的4倍,若拱宽为am,求能使卡车安全通过的a的最小整数值。(图见教材P133页例3)说明:本题的解题过程可归纳务两歩:一是根据实际问题的意义,确定解题途径,得到距拱口中点2m处y的值;二是由通过解不等式,结合问题的实际意义和要求得到a的值,值得注意的是这种思路在与最佳方案有关的应用题中是常用的。3y作业:教材P133闯关训练
本文标题:高三数学课件圆锥曲线的应用高三数学课件
链接地址:https://www.777doc.com/doc-5886919 .html