您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高三数学课件集合的运算2高三数学课件
⑴什么是集合?什么是集合中的元素?⑵常用数集有哪些?记号各是什么?⑶集合中的元素有哪些特征?⑷数0是自然数N中的元素吗?1.回忆复习2.集合的几种表示方法⑴列举法-将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开.例1用列举法表示下列集合:(1)小于10的所有自然数组成的集合;;)2(2合的所有实数根组成的集方程xx(3)由1~20以内的所有质数组成的集合.解:⑴设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.由于元素完全相同的两个集合相等,而与列举的顺序无关,因此集合A可以有不同的列举方法.例如A={9,8,7,6,5,4,3,2,1,0}.}.1,0{,)2(2BBxx那么为集合的所有的实数根组成的设方程}.19,17,13,11,7,5,3,2{,20~1)3(CC那么集合为以内的所有质数组成的设由*有限集与无限集*⑴有限集-------含有有限个元素的集合叫有限集⑵无限集--------含有无限个元素的集合叫无限集例如:A={1~20以内所有质数}例如:B={不大于3的所有实数}(2)描述法-用集合所含元素的共同特征表示集合的方法.具体方法:在花括号内先写上表示这个集合元素的一般符号及以取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.}|{:形式如例2试用列举法和描述法表示下列集合:;02)1(2合的所有实数根组成的集方程x(2)由大于10小于20的所有整数组成的集合.}.2,2{,,2,202.}02|{,,02,02)1(:2222AxxRxAxxx用列举法表示为因此有两个实数根方程用描述法表示为因此件并且满足条的实数根为设方程解}.19,18,17,16,15,14,13,12,11{,,19,18,17,16,15,14,13,12,112010.}2010|{,,2010,2010)2(BxZxBxZxx用列举法表示为因此的整数有小于大于用描述法表示为因此且它满足条件的整数为小于设大于(3)图示法------画一条封闭曲线,用它的内部来表示一个集合.常用于表示不需给具体元素的抽象集合.对已给出了具体元素的集合也当然可以用图示法来表示.如:集合{1,2,3,4,5}用图示法表示为:A12345课堂练习1.选择题A.{x=0,y=1}B.{0,1}C.{(0,1)}D.{(x,y)|x=0或y=1}2:M={m|m=2k,k∈Z},X={x|x=2k+1,k∈Z},Y={y|y=4k+1,k∈Z},则()A.x+y∈MB.x+y∈XC.x+y∈YD.x+yM1:方程组的解集是:()x+y=1x+y=-1CA3.本节小结(思考)本节课主要学研究哪些基本内容?集合的三种表示方法各有怎样的优点?用其表示集合各应注意什么?一目了然比较直观图像法突出元素的属性描述法注意元素的互异性突出元素列举法表示方法,,,,,
本文标题:高三数学课件集合的运算2高三数学课件
链接地址:https://www.777doc.com/doc-5887222 .html