您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 离散型随机变量的数学期望
离散型随机变量的数学期望复习引入前面我们学习了互斥事件、条件概率、相互独立事件的意义,这些都是我们在具体求概率时需要考虑的一些模型,吻合模型用公式去求概率简便.⑴()()()PABPAPB(当AB与互斥时);⑵()(|)()PABPBAPA⑶()()()PABPAPB(当AB与相互独立时)那么求概率还有什么模型呢?1.独立重复试验定义:一般地,在相同条件下重复做的n次试验称为n次独立重复试验1、每次试验是在同样条件下进行;2、每次试验都只有两种结果:发生与不发生;3、各次试验中的事件是相互独立的;4、每次试验,某事件发生的概率是相同的。注:独立重复试验的基本特征:1.基本概念基本概念2、二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为()(1),0,1,2,...,.kknknPXkCppkn此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率。51.概率分布列•一般地,假定随机变量X有n个不同的取值,它们分别是x1,x2,…,xn且P(X=xi)=pi,(i=1,2,…,n)•则称为随机变量X的分布列,简称为X的分布列.Xx1x2…xnPP1,p2…pn此表叫X概率分布列,表格表示1、某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少?2104332221111X把环数看成随机变量的概率分布列:X1234P10410310210121014102310321041)(XE互动探索一、离散型随机变量取值的均值一般地,若离散型随机变量X的概率分布为:nniipxpxpxpxXE2211)(则称为随机变量X的均值或数学期望。P1xix2x······1p2pip······nxnpX它反映了离散型随机变量取值的平均水平。他们的射击技术分别为乙两个射手甲,,试问哪个射手技术较好?例1谁的技术比较好?乙射手击中环数概率10982.05.03.0甲射手击中环数概率10983.01.06.0解),(3.96.0101.093.08)(1环XE),(1.93.0105.092.08)(2环XE.,,21XX为乙射手击中的环数分别设甲故甲射手的技术比较好.•3.(2011·福建福州质检)已知某一随机变量ξ的概率分布列如下,且Eξ=6.3,则a的值为()•A.5B.6•C.7D.8•解析:由分布列性质知:0.5+0.1+b=1,∴b=0.4•∴Eξ=4×0.5+a×0.1+9×0.4=6.3•∴a=7.故选C.•答案:Cξ4a9P0.50.1b•类型一求离散型随机变量的期望•解题准备:求离散型随机变量的期望,一般分两个步骤:•①列出离散型随机变量的分布列;②利用公式Eξ=x1p1+x2p2+…+xipi+…,求出期望值.•【典例1】(2011·福州市高中毕业班综合测试卷)口袋里装有大小相同的卡片八张,其中三张标有数字1,三张标有数字2,两张标有数字3,第一次从口袋里任意抽取一张,放回口袋后第二次再任意抽取一张,记第一次与第二次取到卡片上数字之和为ξ.•(1)ξ为何值时,其发生的概率最大?说明理由.•(2)求随机变量ξ的期望Eξ.[解析](1)依题意,随机变量ξ的取值是2、3、4、5、6.因为P(ξ=2)=3282=964;P(ξ=3)=2×3282=1864;P(ξ=4)=32+2×3×282=2164;P(ξ=5)=2×3×282=1264;P(ξ=6)=2×282=464.所以,当ξ=4时,其发生的概率最大,为P(ξ=4)=2164.•[点评]本题主要考查某事件发生概率的求法,以及离散型随机变量分布列的数学期望的求法.问题(1),对ξ的取值做到不重不漏,这是学生容易出错的地方.利用好计数原理和排列、组合数公式,求事件发生的概率,问题(2)比较容易,用好离散型随机变量分布列的数学期望公式即可.(2)Eξ=2×964+3×1864+4×2164+5×1264+6×464=154.(广东卷17)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为X.(1)求X的分布列;(2)求1件产品的平均利润(即X的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?高考链接:•【解析】(1)X的所有可能取值有6,2,1,-2;,,,故的分布列为:63.0200126)6(XP25.020050)2(XP1.020020)1(XP02.02004)2(XP0.020.10.250.63P-2126X34.402.0)2(1.0125.0263.06EX(2))29.00(76.401.0)2(1)01.07.01(27.06)(xxxxxE73.4)(xE73.476.4x03.0x(3)设技术革新后的三等品率为x,则此时1件产品的平均利润为依题意,,即,解得所以三等品率最多为3%设Y=aX+b,其中a,b为常数,则Y也是随机变量.(1)Y的分布列是什么?(2)E(Y)=?思考:P1xix2x······1p2pip······nxnpXnniipxpxpxpxXE2211)(P1x2x···1p2p···nxnpXP1x2x···1p2p···nxnpXbax1bax2···baxnnnpbaxpbaxpbaxYE)()()()(2211)()(212211nnnpppbpxpxpxabXaE)(Y=aX+b一、离散型随机变量取值的均值nniipxpxpxpxEX2211P1xix2x······1p2pip······nxnpX二、随机变量数学期望的性质(线性性质)baEXbaXE)(即时训练:1、随机变量X的分布列是X135P0.50.30.2(1)则E(X)=.2、随机变量ξ的分布列是2.4(2)若Y=2X+1,则E(Y)=.5.8ξ47910P0.3ab0.2E(ξ)=7.5,则a=b=.0.40.1例1:已知随机变量X的分布列如下:X-2-1012P141315m120(1)求m的值;(2)求E(X);(3)若Y=2X-3,求E(Y).11762;,63015例1.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球1次的得分X的均值是多少?一般地,如果随机变量X服从两点分布,X10Pp1-p则pppXE)1(01)(三、例题讲解两点分布的期望三、例题讲解变式1.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,则他连续罚球3次的得分X的均值是多少?X0123P33.0分析:X~B(3,0.7)2133.07.0C3.07.0223C37.0322321337.033.07.023.07.013.00CCEX1.27.03为什么呢?Ex=例1.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球1次的得分X的均值是多少?三、例题讲解变式2.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为p,则他连续罚球n次的得分x的均值是多少?x01…k…np……111nnCpqkknknCpq0nnnCpqx的概率分布如下:x~B(n,p)00nnCpq为什么呢?能证明它吗?E(X)=np证明:n),0,1,2,(kqpCk)P(ξknkkn0nnnknkkn1n11nn00nqpnCqpkCqpC1qpC0Eξ)qpCqpCqpCqpnp(C01n1n1n1)(k1)(n1k1k1n2n111n1n001n所以若ξ~B(n,p),则E(ξ)=np.证明:若ξ~B(n,p),则Eξ=np1().nnppqnp2;一般地,如果随机变量X服从二项分布,即X~B(n,p),则E(X)=np结论:1;一般地,如果随机变量X服从两点分布(1,p),则E(X)=p3,一个袋子里装有大小相同的3个红球和2个黄球,从中有放回地取5次,则取到红球次数的数学期望是.3即时训练:4,随机变量X~B(8,p),已知X的均值E(X)=2,则P(x=3)=.例4:一次单元测验由20个选择题构成,每个选择题有4个选项.其中仅有一个选项正确,每题选对得5分.不选或选错不得分,满分100分.学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从各选项中随机地选择一个.分别求学生甲和学生乙在这次测验中的成绩的均值.思路分析:设甲、乙选对题数分别为X1、X2,则甲、乙两人的成绩分别为Y1=5X1、Y2=5X2,问题转化为求:E(Y1)=E(5X1)=E(Y2)=E(5X2)=思考:X1、X2服从什么分布?5E(X1)5E(X2)解:设学生甲和学生乙在这次单元测验中选对的题数分别是X1和X2,则X1~B(20,0.9),X2~B(20,0.25),EX1=20×0.9=18,EX2=20×0.25=5.由于答对每题得5分,学生甲和学生乙在这次测验中的成绩分别是5X1和5X2。所以,他们在测验中的成绩的期望分别是E(5X1)=5EX1=5×18=90,E(5X2)=5EX2=5×5=25.(2010·衡阳模拟)一厂家向用户提供的一箱产品共10件,其中有n件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)若这箱产品被用户接收的概率是,求n的值;(2)在(1)的条件下,记抽检的产品次品件数为X,求X的分布列和数学期望.作业:【解】(1)设“这箱产品被用户接收”为事件A,∴n=2.(2)X的可能取值为1,2,3.P(A)=P(X=1)=P(X=2)=P(X=3)=∴X的概率分布列为:X123P1828109()123.5454545EX1.(2010·河南六市联考)甲、乙、丙、丁四人参加一家公司的招聘面试.公司规定面试合格者可签约.甲、乙面试合格就签约;丙、丁面试都合格则一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求:(1)至少有三人面试合格的概率;(2)恰有两人签约的概率;(3)签约人数的数学期望.解:(1)设“至少有3人面试合格”为事件A,则P(A)=(2)设“恰有2人签约”为事件B,“甲、乙两人签约,丙、丁两人都不签约”为事件B1;“甲、乙两人都不签约,丙、丁两人签约”为事件B2;则:B=B1+B2P(B)=P(B1)+P(B2)(3)设X为签约人数.X的分布列如下:P(X=0)=P(X=1)=P(X=2)=P(X=3)=P(X=4)=X01234P52024161620()01234.81848181819EX
本文标题:离散型随机变量的数学期望
链接地址:https://www.777doc.com/doc-5899059 .html