您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 上课28.2解直角三角形(1)课件
新人教版九年级数学(下册)第二十八章§28.2解直角三角形(1)复习30°、45°、60°角的正弦值、余弦值和正切值如下表:锐角a三角函数30°45°60°sinacosatana1222322212332331对于sinα与tanα,角度越大,函数值也越大;对于cosα,角度越大,函数值越小。1.知道解直角三角形的定义,能熟练地解直角三角形,并归纳其类型.2.能够把复杂问题转化为解直角三角形的模型.学习目标问题1.直角三角形中,除直角外还有几个元素呢?解直角三角形ABabcC这五个元素有什么关系呢?(2)两锐角之间的关系∠A+∠B=90°(3)边角之间的关系caAA斜边的对边sincbBB斜边的对边sincbAA斜边的邻边coscaBB斜边的邻边cosbaAAA的邻边的对边tanabBBB的邻边的对边tan(1)三边之间的关系222cba(勾股定理)ABabcC关系:问题2:知道5个元素当中几个,就可以求其他元素?1.已知两条边:2已知一边一角:⑴两直角边⑵一直角边和斜边⑴一直角边和一锐角⑵斜边和一锐角猜想归纳,解直角三角形的类型:在直角三角形中,由已知元素求未知元素的过程,叫解直角三角形例1如图,在Rt△ABC中,∠C=90°,解这个直角三角形6,2BCAC解:326tanACBCA60A30609090AB222ACABABC26跟踪练习•导学案导学提纲的例题•导学案巩固性练习(1)温故而知新解直角三角形的原则:(1)有角先求角,无角先求边(2)有斜用弦,无斜用切;(3)宁乘毋除,取原避中。•巩固性练习的(3)(4)解:作△ABC的高AD.在Rt△ACD中,∠C=45°,AC=∴AD=CD=,∠CAD=45°.在Rt△ABD中,∠ADB=90°,AB=2,AD=∴BD=1,∠A=30°,∠B=60°.∴在△ABC中,BC=1+,∠B=60°,∠CAB=75°6333D作高45°精点深学非直角三角形1.如图,在锐角△ABC中,∠C=45°,AC=,AB=2,求△ABC中未知的边和未知的角.6CBA62直角三角形•如图,在电线杆上离地面高度5m的C点处引两根拉线固定电线杆,一根拉线AC和地面成60°角,另一根拉线BC和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示)•导学案拓展性练习第1题•导学案针对性练习第4题达标检测•1、2、4解决有关比萨斜塔倾斜的问题.设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为点C(如图),在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m0954.05.542.5sinABBCA所以∠A≈5°28′可以求出2001年纠偏后塔身中心线与垂直中心线的夹角.你愿意试着计算一下吗?ABC例4:2008年10月15日“神舟”7号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6400km,结果精确到0.1km)分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.·OQFPα如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点.的长就是地面上P、Q两点间的距离,为计算的长需先求出∠POQ(即a)PQPQPQ解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.95.035064006400cosOFOQa18a∴PQ的长为6.200964014.3640018018当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约2009.6km·OQFPα1.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=520m,∠D=50°,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m)50°140°ABCED∴∠BED=∠ABD-∠D=90°cosDEBDEBDcosDEBDEBDcos505200.64520332.8答:开挖点E离点D332.8m正好能使A,C,E成一直线.解:要使A、C、E在同一直线上,则∠ABD是△BDE的一个外角2.如图所示,一棵大树在一次强烈的地震中于离地面10米处折断倒下,树顶落在离树根24米处.大树在折断之前高多少?解利用勾股定理可以求出折断倒下部分的长度为:26+10=36(米).答:大树在折断之前高为36米.22102426+=3.如图,太阳光与地面成60度角,一棵倾斜的大树AB与地面成30度角,这时测得大树在地面上的影长为10m,请你求出大树的高.ABC30°地面太阳光线60°30AB的长D(2)两锐角之间的关系∠A+∠B=90°(3)边角之间的关系caAA斜边的对边sincbBB斜边的对边sincbAA斜边的邻边coscaBB斜边的邻边cosbaAAA的邻边的对边tanabBBB的邻边的对边tan(1)三边之间的关系222cba(勾股定理)ABabcC在解直角三角形的过程中,一般要用到下面一些关系:复习30°、45°、60°角的正弦值、余弦值和正切值如下表:锐角a三角函数30°45°60°sinacosatana1222322212332331对于sinα与tanα,角度越大,函数值也越大;(带正)对于cosα,角度越大,函数值越小。问题:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角a一般要满足50°≤a≤75°.现有一个长6m的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m)?(2)当梯子底端距离墙面2.4m时,梯子与地面所成的角a等于多少(精确到1°)?这时人是否能够安全使用这个梯子?这样的问题怎么解决问题(1)可以归结为:在Rt△ABC中,已知∠A=75°,斜边AB=6,求∠A的对边BC的长.问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的距离是使用这个梯子所能攀到的最大高度.因此使用这个梯子能够安全攀到墙面的最大高度约是5.8mABBCAsin75sin6sinAABBC所以BC≈6×0.97≈5.8由计算器求得sin75°≈0.97由得ABαC对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的角a的问题,可以归结为:在Rt△ABC中,已知AC=2.4,斜边AB=6,求锐角a的度数由于4.064.2cosABACa利用计算器求得a≈66°因此当梯子底墙距离墙面2.4m时,梯子与地面所成的角大约是66°由50°<66°<75°可知,这时使用这个梯子是安全的.ABCα在图中的Rt△ABC中,(1)根据∠A=75°,斜边AB=6,你能求出这个直角三角形的其他元素吗?探究ABCα能sinsin6sin75BCABCABAABcoscos6cos75ACAACABAAB90909075ABBA6=75°在图中的Rt△ABC中,(2)根据AC=2.4,斜边AB=6,你能求出这个直角三角形的其他元素吗?探究222222262.45.5ABACBCBCABAC2.4coscos0.4666ACAAAAB9090906624ABBAABCα能62.4
本文标题:上课28.2解直角三角形(1)课件
链接地址:https://www.777doc.com/doc-5901829 .html