您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 销售管理 > 电机分析-3-机电能量转换
电机分析讲义—2004111¾¾机电能量转换的基本原理机电能量转换的基本原理¾¾旋转电机机电能量转换的条件旋转电机机电能量转换的条件¾¾总结总结第第22部分部分机电能量转换机电能量转换221.11.1概概述述¾¾研究机电能量转换的目的与意义研究机电能量转换的目的与意义¾¾机电能量转换方式机电能量转换方式¾¾机电能量转换装置的分类机电能量转换装置的分类¾¾机电能量转换装置的基本构成机电能量转换装置的基本构成1.1.机电能量转换的基本原理机电能量转换的基本原理33((11))研究机电能量转换的目的与意义研究机电能量转换的目的与意义9建立各种电机能量转换机制的总体概念,进而加深对各种电机个性的理解9这些规律可推广到其他种类的机电装置中,并为今后研发分析各种特殊和新型电机提供理论基础机电能量转换研究的是机电耦合系统中能量传递和转换的规律。在了解各种电机的个性的基础上,用机电能量转换的基本原理概括其共性(共同规律)。44((22)机电能量转换方式)机电能量转换方式电致伸缩与压电效应电致伸缩与压电效应磁致伸缩磁致伸缩电场力电场力静电式机电装置电磁力电磁力电磁式机电装置(如:旋转电机)实际中,绝大多数机电装置采用电磁力来实现机电能量转换。以下仅以电磁式电磁式机电装置为研究对象。55((33)机电能量转换装置的分类)机电能量转换装置的分类¾¾机电信号变换器机电信号变换器主要用于测量和控制装置中,如拾音器、扬声器、旋转变压器等¾¾动铁换能器动铁换能器电励磁产生力,使动铁产生有限位移。如继电器、电磁铁等¾¾机电能量持续转换装置机电能量持续转换装置如电动机、发电机等按功能分类:按功能分类:旋转电机是机电能量转换装置中较复杂的一类。66电磁铁电磁铁电磁铁由一个电端口和一个机械端口组成电机分析讲义—2004277他励直流电动机他励直流电动机Ω直流电动机由两个电端口和一个机械端口组成ufΩifuaiaT88在机电装置中,电频率较低,可动部件的运动远远低于光速,因此可以:(1)忽略电磁辐射,认为装置是质量守恒系统;(2)把磁场与电场分别考虑。((44)机电能量转换装置的基本构成)机电能量转换装置的基本构成载流的电系统可动的机械系统作为耦合媒介和储存能量的电磁场组成部分:组成部分:从总体看,有两大部分:固定部分、可动部分991.21.2机电能量转换过程中的能量关系机电能量转换过程中的能量关系zz能量守恒原理是研究机电装置的基本出发点之一能量守恒原理是研究机电装置的基本出发点之一zz耦合场及其储能的存在,是机电能量转换的关键耦合场及其储能的存在,是机电能量转换的关键机电能量转换依赖于耦合场的作用来实现机电能量转换依赖于耦合场的作用来实现电磁场作为耦合媒介并储存能量独立的磁场(电磁式)或者电场(静电式)耦合场的变化会引起电系统和机械系统的变化,是机电能量转换的核心质量守恒的物理系统遵循能量守恒原理质量守恒的物理系统遵循能量守恒原理1010根据能量守恒原理,按照电动机惯例,可写出机电装置的能量方程式为((11)机电装置的能量方程式)机电装置的能量方程式zz能量方程式能量方程式对于发电机,电能、机械能均为负值电系统的电阻损耗机械系统的机械损耗介质损耗(如铁耗)1111zz损耗的处理损耗的处理将各损耗归并到相应的系统中,能量方程式为输入耦合场的净电能转换为机械能的全部能量耦合电磁场吸收的总能量能量转换过程是由耦合场的变化对电系统和机械系统的反应所引起。损耗不影响能量转换的基本过程。把损耗分类并扣除,可得到无损耗的机电耦合系统(保守系统)——突出问题的核心(耦合场对电系统和机械系统的反应与作用)。1212eRi2RuiT2(f2)T(f)()xΩzz能量微分平衡式能量微分平衡式对于此无损耗系统,在时间dt内,能量关系为dWe——在时间dt内输入耦合场的电能;dWm——在时间dt内耦合场储能的增量;dWmec——在时间dt内耦合场输出的机械能。dWe=dWm+dWmec电机分析讲义—200431313((22)保守系统和状态函数)保守系统和状态函数zz保守系统保守系统保守系统的总能量是守恒的。理想物理系统的储能元件——本身无损耗,在一定条件下能储存能量,当条件变化时又可释放能量(如线圈、电容器、运动物体、被升高的静物)对于机电系统,若将其损耗移出,电系统和机械系统都不与外界能源相连,则成为一个保守系统。全部由能存储和释放能量且无损耗的储能元件组成的、与周围系统没有能量交换的自守物理系统。1414((22)保守系统和状态函数)保守系统和状态函数zz保守系统的特点保守系统的特点9系统的储能以及与储能相联系的保守力都是状态函数,即两者都仅与系统的瞬时状态有关,而与系统的历史和到达该瞬时状态的路径无关。9系统的瞬时状态可用一组独立的状态变量来描述状态函数——由一组状态变量所确定的、描述系统即时状态的单值函数(如电容储能W=f(q)=)保守力——储能元件处于储能状态时对外表现出的广义力(如电容电压)()/2/ufqqCWC===2/2qC15151.31.3机电能量转换基本原理机电能量转换基本原理以电磁铁为例——昀简单的、以磁场为耦合场、单边激励的机电装置δ正方向如图中所示铁心C衔铁A弹簧Kle为铁心磁路长度1616((11)感应电动势和电能输入)感应电动势和电能输入zz电能输入的必要条件电能输入的必要条件δd/duiRetψ−=−=1112e000()dddttWuiiRteitiψψ=−=−=∫∫∫将衔铁固定在某一位置x;按规定的正方向edddWeitiψ=−=——产生感应电动势是耦合场从电源输入电能的必要条件。通过磁场和线圈磁通量的变化,在线圈内感应电动势,从而给耦合场输入能量1717机电能量转换装置中,磁链ψ随电流i和可动部分的运动而变化,((11)感应电动势和电能输入)感应电动势和电能输入zz感应电动势感应电动势δddddddetixitxtψψψ=−∂∂=−+∂∂变压器电动势:由电流变化引起即ψ=f(i,x)或ψ=f(i,θmec)。运动电动势:由可动部分运动使磁路磁导变化而引起1818dddd()ddddiLxeLxittxtψ=−=−+是否产生运动电动势,是运动电路与静止电路的主要区别之一。((11)感应电动势和电能输入)感应电动势和电能输入zz感应电动势感应电动势当系统为线性时,ψ=L(x)i。其中:L(x)——系统的电感,与i无关,仅与位移x有关。对于静止的线性系统,L=ψ/i=N2Λ=const,运动电动势为零。则电机分析讲义—200441919((22)磁场储能)磁场储能zz磁能磁能设衔铁固定,没有机械运动,则输入的电能将全部变为磁场的储能:11m00ddWiFψφψφ==∫∫meddddWWiFψφ===ψdψ1ψ2ψψ即矩形abcd的面积。当t=t1,x=x1,i=i1,ψ=ψ1时,电磁铁的磁能为等于图形0ef的面积。当t=t2,x=x2,i=i2,ψ=ψ2时,等于0gh面积。2020((22)磁场储能)磁场储能zz磁能磁能11m00ddWiFψφψφ==∫∫ψdψ1ψ2ψψ磁能Wm是状态函数,仅与瞬时状态有关,仅是电流i和位置x(或ψ与x,或i与ψ)的单值函数。无论可动部分运动与否,计算瞬时磁能时,总是将其等效为静止在瞬时状态的位置,使电流i由零增大到瞬时状态的电流。只要瞬时的状态相同,磁能就相同。2121((22)磁场储能)磁场储能zz磁能磁能11m00ddWiFψφψφ==∫∫♦另一种表达形式♦磁路为线性时11m00eddBFWVVHBlAφφ==∫∫在同一种导磁介质中磁路的磁导Λ、线圈的电感L均为常数,则有222m1111122222WLiiFFφψφΛΛ=====22m111222BwBHHµµ===磁能密度(单位体积内的磁能)为(µ为磁导率)(V为磁路体积,V=Ale)2222((22)磁场储能)磁场储能zz磁共能磁共能11m1111m00ddiWiiiiWψψψψψ′==−=−∫∫磁共能定义为磁共能也是一个状态函数。磁共能没有特定的物理意义,在某些情况下可用来简化运算。磁路线性时,1m0diWiψ′=∫mm11WWiψ′+=mm1112WWiψ′==1ψψ磁能mWmW′2323((33)磁场力和机械能)磁场力和机械能zz磁能产生电磁力的物理概念磁能产生电磁力的物理概念电磁铁通电,产生电磁力,使衔铁向吸合位置运动。该电磁力来源于电源通过耦合场传递来的能量。δ选取在此过程中的两个瞬时状态来分析:即∆t=t2-t1,∆i=i2-i1,∆x=x2-x1。其间产生平均电磁力fmav,使衔铁位移∆x所做的机械功为∆Wmec=fmav∆x。∆We=∆Wm+∆Wmect=t1时:i=i1,x=x1;t=t2时:i=i2,x=x22424((33)磁场力和机械能)磁场力和机械能zz磁能产生电磁力的物理概念磁能产生电磁力的物理概念在∆t时间内由电源供给耦合磁场的净电能为δψ1、ψ2对应不同位置x1、x2,磁化曲线不同,电流也不同,因此积分路径与x=const时不同。2211212ed()dddttttWuiiRteitiψψψ=−=−=∫∫∫i0i11ψψabdx=x2x=x1i22ψc电机分析讲义—200452525zz磁能产生电磁力的物理概念磁能产生电磁力的物理概念对以下三种情况分别讨论对以下三种情况分别讨论第一种理想情况∆t内i=consti0i11ψψabdx=x2x=x1i22ψci0i11ψψ2ψabcdx=x2x=x1i0i11ψψabcx=x2x=x1i2第二种理想情况∆t内ψ=const第三种情况∆t内i、ψ变化2626zz磁能产生电磁力的物理概念磁能产生电磁力的物理概念第一种理想情况:第一种理想情况:∆∆tt内内ii==constconsti0i11ψψ2ψabcdx=x2x=x1a点磁能Wma=面积0adb点磁能Wmb=面积0bc磁能增量∆Wm=面积0bc-面积0ad净电能增量机械能增量∆Wmec=∆We-∆Wm21e1121d()Wiiabcdψψψψψ∆−∫===积面=面积0abmavmecmconstifxWW=′∆=∆=∆mmavconstiWfx=′∆=∆即或2727zz磁能产生电磁力的物理概念磁能产生电磁力的物理概念第二种理想情况:第二种理想情况:∆t内ψ=consti0i11ψψabcx=x2x=x1i2=面积0ac-面积0bc净电能增量机械能增量∆Wmec=∆We-∆Wm=-∆Wm21e1d0Wiψψψ∆∫==mavmecmconstfxWWψ=∆=∆=−∆mmavconstWfxψ=∆=−∆即或=面积0ab2828zz磁能产生电磁力的物理概念磁能产生电磁力的物理概念第三种情况:第三种情况:∆t内i、ψ都变化1ψψ2ψ∆Wmec=面积0ab综合以上三种情况,电磁力所做的机械功∆Wmec总是由两条磁化曲线和过渡轨迹所包围的面积0ab来确定。i0i11ψψ2ψabcdx=x2x=x1i0i11ψψabcx=x2x=x1i2当∆x→0时,面积0ab=∆Wmec趋于相等,求得的fmav→位置x1处电磁力的真值。2929zz磁能产生电磁力的物理概念磁能产生电磁力的物理概念电磁力的表达式电磁力的表达式把以上两式改写成微分形式,可得mmavconstiWfx=′∆=∆mmavconstWfxψ=∆=−∆mmmavconstconstiWWfxxψ==′∂∂=−=∂∂位移∂x→0的极限是一个虚位移。因此不论运动速度、电流和磁链如何变化,上式都可求出正确结果。上式表明fmav与∂x同号,即fmav是指向使气隙减小的方向。3030zz磁能产生电磁力的数学推导磁能产生电磁力的数学推导♦♦以电流以电流ii和位移和位移xx为独立变量为独立变量mm(,)(,)WWixixψψ=,=edddddWeitiiiixixψψψ∂∂=−==+∂∂mmmddd∂∂=+∂∂mecmddWfx=emmecddd=+memdddfxWW=−,mm()d()dWWii
本文标题:电机分析-3-机电能量转换
链接地址:https://www.777doc.com/doc-5905208 .html